enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bode plot - Wikipedia

    en.wikipedia.org/wiki/Bode_plot

    It is usually a combination of a Bode magnitude plot, expressing the magnitude (usually in decibels) of the frequency response, and a Bode phase plot, expressing the phase shift. As originally conceived by Hendrik Wade Bode in the 1930s, the plot is an asymptotic approximation of the frequency response, using straight line segments .

  3. Finite difference methods for option pricing - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_methods...

    As above, the PDE is expressed in a discretized form, using finite differences, and the evolution in the option price is then modelled using a lattice with corresponding dimensions: time runs from 0 to maturity; and price runs from 0 to a "high" value, such that the option is deeply in or out of the money. The option is then valued as follows: [5]

  4. Bode's sensitivity integral - Wikipedia

    en.wikipedia.org/wiki/Bode's_sensitivity_integral

    Bode's sensitivity integral, discovered by Hendrik Wade Bode, is a formula that quantifies some of the limitations in feedback control of linear parameter invariant systems. Let L be the loop transfer function and S be the sensitivity function .

  5. Kinetic exchange models of markets - Wikipedia

    en.wikipedia.org/wiki/Kinetic_exchange_models_of...

    In the context of kinetic theory of gases, such an exchange model was first investigated by A. Dragulescu and V. Yakovenko. [5] [6] Later, scholars found that in 1988, Bennati had independently introduced the same kinetic exchange dynamics, thus leading to the nomenclature of this model as Bennati-Dragulescu-Yakovenko (BDY) game. [7]

  6. Volatility smile - Wikipedia

    en.wikipedia.org/wiki/Volatility_smile

    In the Black–Scholes model, the theoretical value of a vanilla option is a monotonic increasing function of the volatility of the underlying asset. This means it is usually possible to compute a unique implied volatility from a given market price for an option. This implied volatility is best regarded as a rescaling of option prices which ...

  7. Binomial options pricing model - Wikipedia

    en.wikipedia.org/wiki/Binomial_options_pricing_model

    In finance, the binomial options pricing model (BOPM) provides a generalizable numerical method for the valuation of options.Essentially, the model uses a "discrete-time" (lattice based) model of the varying price over time of the underlying financial instrument, addressing cases where the closed-form Black–Scholes formula is wanting, which in general does not exist for the BOPM.

  8. Local volatility - Wikipedia

    en.wikipedia.org/wiki/Local_volatility

    A local volatility model, in mathematical finance and financial engineering, is an option pricing model that treats volatility as a function of both the current asset level and of time . As such, it is a generalisation of the Black–Scholes model , where the volatility is a constant (i.e. a trivial function of S t {\displaystyle S_{t}} and t ...

  9. Stochastic volatility - Wikipedia

    en.wikipedia.org/wiki/Stochastic_volatility

    Starting from a constant volatility approach, assume that the derivative's underlying asset price follows a standard model for geometric Brownian motion: = + where is the constant drift (i.e. expected return) of the security price , is the constant volatility, and is a standard Wiener process with zero mean and unit rate of variance.