Search results
Results from the WOW.Com Content Network
Aside from the Orthographic, six standard principal views (Front; Right Side; Left Side; Top; Bottom; Rear), descriptive geometry strives to yield four basic solution views: the true length of a line (i.e., full size, not foreshortened), the point view (end view) of a line, the true shape of a plane (i.e., full size to scale, or not ...
In mathematics, a Euclidean plane is a Euclidean space of dimension two, denoted or . It is a geometric space in which two real numbers are required to determine the position of each point . It is an affine space , which includes in particular the concept of parallel lines .
In mathematics, a plane is a two-dimensional space or flat surface that extends indefinitely. A plane is the two-dimensional analogue of a point (zero dimensions), a line (one dimension) and three-dimensional space. When working exclusively in two-dimensional Euclidean space, the definite article is used, so the Euclidean plane refers to the ...
A flat can be described by a system of linear equations.For example, a line in two-dimensional space can be described by a single linear equation involving x and y: + = In three-dimensional space, a single linear equation involving x, y, and z defines a plane, while a pair of linear equations can be used to describe a line.
Each iteration of the Sierpinski triangle contains triangles related to the next iteration by a scale factor of 1/2. In affine geometry, uniform scaling (or isotropic scaling [1]) is a linear transformation that enlarges (increases) or shrinks (diminishes) objects by a scale factor that is the same in all directions (isotropically).
A plane segment or planar region (or simply "plane", in lay use) is a planar surface region; it is analogous to a line segment. A bivector is an oriented plane segment, analogous to directed line segments. [a] A face is a plane segment bounding a solid object. [1] A slab is a region bounded by two parallel planes.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The plane containing the two vectors T(s) and N(s) is the osculating plane to the curve at γ(s). The curvature has the following geometrical interpretation. There exists a circle in the osculating plane tangent to γ(s) whose Taylor series to second order at the point of contact agrees with that of γ(s). This is the osculating circle to the ...