Search results
Results from the WOW.Com Content Network
[1] [2] The fluid in this space is called interstitial fluid, comprises water and solutes, and drains into the lymph system. [2] The interstitial compartment is composed of connective and supporting tissues within the body – called the extracellular matrix – that are situated outside the blood and lymphatic vessels and the parenchyma of organs.
The liver parenchyma is the functional tissue of the organ made up of around 80% of the liver volume as hepatocytes. The other main type of liver cells are non-parenchymal. Non-parenchymal cells constitute 40% of the total number of liver cells but only 6.5% of its volume. [11]
The ECF compartment is divided into the interstitial fluid volume – the fluid outside both the cells and the blood vessels – and the intravascular volume (also called the vascular volume and blood plasma volume) – the fluid inside the blood vessels – in a three-to-one ratio: the interstitial fluid volume is about 12 liters; the vascular ...
The functional substance, or parenchyma, of the human kidney is divided into two major structures: the outer renal cortex and the inner renal medulla. Grossly, these structures take the shape of eight to 18 cone-shaped renal lobes, each containing renal cortex surrounding a portion of medulla called a renal pyramid. [18]
The volume of body fluid, blood glucose, oxygen, and carbon dioxide levels are also tightly homeostatically maintained. The volume of extracellular fluid in a young adult male of 70 kg (154 lbs) is 20% of body weight – about fourteen liters. Eleven liters are interstitial fluid and the remaining three liters are plasma. [7]
The transcellular fluid is the portion of total body fluid that is formed by the secretory activity of epithelial cells and is contained within specialized epithelial-lined compartments. Fluid does not normally collect in larger amounts in these spaces, [6] [7] and any significant fluid collection in these spaces is physiologically ...
Pulmonary interstitial pressure (Pi) rises as lung volume decreases due to reduced radial tethering of the lung parenchyma. Pi is highest at the base of the lung due to the weight of the above lung tissue. Pi can also rise due to an increased volume of 'leaked' fluid from the pulmonary vasculature (pulmonary edema). An increase in Pi causes ...
The majority of fluid output occurs via the urine, approximately 1500 ml/day (approx 1.59 qt/day) in the normal adult resting state. [12] [13] Some fluid is lost through perspiration (part of the body's temperature control mechanism) and as water vapor in exhaled air. These are termed "insensible fluid losses" as they cannot be easily measured.