Search results
Results from the WOW.Com Content Network
Acarbose is an oligosaccharide, whereas miglitol resembles a monosaccharide. Miglitol is fairly well absorbed by the body, as opposed to acarbose. Moreover, acarbose inhibits pancreatic alpha-amylase in addition to alpha-glucosidase, and is degraded by gut bacterial maltogenic alpha-amylase and cyclomaltodextrinase. [4] [5]
Miglitol is an oral alpha-glucosidase inhibitor used in the treatment of type 2 diabetes. It works by reversibly inhibiting alpha-glucosidase enzymes in the small intestine, which delays the digestion of complex carbohydrates and subsequently reduces postprandial glucose levels. [ 1 ]
Acarbose degradation is the unique feature of glycoside hydrolases in gut microbiota, acarbose degrading glucosidase, which hydrolyze acarbose into an acarviosine-glucose and glucose. [17] Human enzymes do transform acarbose: the pancreatic alpha-amylase is able to perform a rearrangement reaction , moving the glucose unit in the "tail" maltose ...
miglitol; acarbose; voglibose; These medications are rarely used in the United States because of the severity of their side-effects (flatulence and bloating). They are more commonly prescribed in Europe. They do have the potential to cause weight loss by lowering the amount of sugar metabolized.
Absorption is the journey of a drug travelling from the site of administration to the site of action. [ 1 ] [ 2 ] The drug travels by some route of administration ( oral , topical-dermal , etc.) in a chosen dosage form (e.g., tablets , capsules , or in solution ). [ 3 ]
Alpha glucosidase inhibitors delay glucose absorption at the intestine level and thereby prevent sudden surge of glucose after a meal. [ 2 ] There are three major drugs which belong to this class, acarbose , miglitol and voglibose, [ 2 ] of which voglibose is the newest.
The absorption rate constant K a is a value used in pharmacokinetics to describe the rate at which a drug enters into the system. It is expressed in units of time −1. [1] The K a is related to the absorption half-life (t 1/2a) per the following equation: K a = ln(2) / t 1/2a. [1] K a values can typically only be found in research articles. [2]
Lipid metabolism is often considered the digestion and absorption process of dietary fat; however, there are two sources of fats that organisms can use to obtain energy: from consumed dietary fats and from stored fat. [5] Vertebrates (including humans) use both sources of fat to produce energy for organs such as the heart to function. [6]