Search results
Results from the WOW.Com Content Network
The magnetic field (marked B, indicated by red field lines) around wire carrying an electric current (marked I) Compass and wire apparatus showing Ørsted's experiment (video [1]) In electromagnetism, Ørsted's law, also spelled Oersted's law, is the physical law stating that an electric current induces a magnetic field. [2]
The main problem of Kaufmann's experiments was his use of parallel magnetic and electric fields, as pointed out by Adolf Bestelmeyer (1907). Using a method based on perpendicular magnetic and electric fields (introduced by J. J. Thomson and further developed to a velocity filter by Wilhelm Wien ), Bestelmeyer obtained considerably different ...
Einstein's 1905 paper that introduced the world to relativity opens with a description of the magnet/conductor problem: [3]. It is known that Maxwell's electrodynamics – as usually understood at the present time – when applied to moving bodies, leads to asymmetries which do not appear to be inherent in the phenomena.
The Maxwell–Faraday equation (listed as one of Maxwell's equations) describes the fact that a spatially varying (and also possibly time-varying, depending on how a magnetic field varies in time) electric field always accompanies a time-varying magnetic field, while Faraday's law states that emf (electromagnetic work done on a unit charge when ...
A sample is first placed in a constant magnetic field and if the sample is magnetic it will align its magnetization with the external field. The magnetic dipole moment of the sample creates a magnetic field that changes as a function of time as the sample is moved up and down. This is typically done through the use of a piezoelectric material ...
In this experiment, a static magnetic field runs through a long magnetic wire (e.g., an iron wire magnetized longitudinally). Outside of this wire the magnetic induction is zero, in contrast to the vector potential, which essentially depends on the magnetic flux through the cross-section of the wire and does not vanish outside.
To concentrate the magnetic field in an electromagnet, the wire is wound into a coil with many turns of wire lying side-by-side. [2] The magnetic field of all the turns of wire passes through the center of the coil, creating a strong magnetic field there. [2] A coil forming the shape of a straight tube (a helix) is called a solenoid. [1] [2]
Similarly, if only the magnetic field (B) is non-zero and is constant in time, the field is said to be a magnetostatic field. However, if either the electric or magnetic field has a time-dependence, then both fields must be considered together as a coupled electromagnetic field using Maxwell's equations. [9]