Search results
Results from the WOW.Com Content Network
Aside from the Orthographic, six standard principal views (Front; Right Side; Left Side; Top; Bottom; Rear), descriptive geometry strives to yield four basic solution views: the true length of a line (i.e., full size, not foreshortened), the point view (end view) of a line, the true shape of a plane (i.e., full size to scale, or not ...
Let H = {h 1, h 2, ..., h k} be the convex hull of P; then the farthest-point Voronoi diagram is a subdivision of the plane into k cells, one for each point in H, with the property that a point q lies in the cell corresponding to a site h i if and only if d(q, h i) > d(q, p j) for each p j ∈ S with h i ≠ p j, where d(p, q) is the Euclidean ...
Extreme distortion far from the center. Shows less than one hemisphere. 1772 Lambert azimuthal equal-area: Azimuthal Equal-area Johann Heinrich Lambert: The straight-line distance between the central point on the map to any other point is the same as the straight-line 3D distance through the globe between the two points. c. 150 BC: Stereographic
With an axonometric projection, the scale of an object does not depend on its location (i.e., an object in the "foreground" has the same scale as an object in the "background"); consequently, such pictures look distorted, as human vision and photography use perspective projection, in which the perceived scale of an object depends on its ...
As with spreads, the most well-studied case is partial spreads of lines of the finite projective space (,), where a full spread has size +. Mesner [ 29 ] showed that any partial spread of lines in P G ( 3 , q ) {\displaystyle PG(3,q)} with size greater than q 2 − q {\displaystyle q^{2}-{\sqrt {q}}} cannot be complete; indeed, it must be a ...
A plane duality is a map from a projective plane C = (P, L, I) to its dual plane C ∗ = (L, P, I ∗) (see § Principle of duality above) which preserves incidence. That is, a plane duality σ will map points to lines and lines to points (P σ = L and L σ = P) in such a way that if a point Q is on a line m (denoted by Q I m) then Q I m ⇔ m ...
In graph theory, a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cross each other. [9] Such a drawing is called a plane graph or planar embedding of the graph.
In a multiplicatively weighted Voronoi diagram, the distance between a point and a site is divided by the (positive) weight of the site. [1] In the plane under the ordinary Euclidean distance , the multiplicatively weighted Voronoi diagram is also called circular Dirichlet tessellation [ 2 ] [ 3 ] and its edges are circular arcs and straight ...