Search results
Results from the WOW.Com Content Network
Lorentz force on a charged particle (of charge q) in motion (velocity v), used as the definition of the E field and B field. Here subscripts e and m are used to differ between electric and magnetic charges. The definitions for monopoles are of theoretical interest, although real magnetic dipoles can be described using pole strengths.
Here, k e is a constant, q 1 and q 2 are the quantities of each charge, and the scalar r is the distance between the charges. The force is along the straight line joining the two charges. If the charges have the same sign, the electrostatic force between them makes them repel; if they have different signs, the force between them makes them attract.
Lorentz force can crusher pinch [10] 30 kA Typical lightning strike 10 5: 100 kA Low range of Birkeland current that creates Earth's aurorae 140 kA "Sq" current of one daytime vortex within the ionospheric dynamo region: 180 kA Typical current used in electric arc furnace for ferroalloys [11] 10 6: 1 MA High range of Birkeland current: 5 MA
The average force applied by seatbelt and airbag to a restrained passenger in a car which hits a stationary barrier at 100 km/h [24] 569 kN Maximum thrust of a large turbofan engine (General Electric GE90) 890 kN Maximum pulling force (tractive effort) of a single large diesel-electric locomotive [1] 10 6 N meganewton (MN) 1.8 MN
The electric field was formally defined as the force exerted per unit charge, but the concept of potential allows for a more useful and equivalent definition: the electric field is the local gradient of the electric potential. Usually expressed in volts per metre, the vector direction of the field is the line of greatest slope of potential, and ...
Electric charge: Q: The force per unit electric field strength coulomb (C = A⋅s) T I: extensive, conserved Electric charge density: ρ Q: Electric charge per unit volume C/m 3: L −3 T I: intensive Electrical conductance: G: Measure for how easily current flows through a material siemens (S = Ω −1) L −2 M −1 T 3 I 2: scalar Electrical ...
electric charge: coulomb: C A⋅s I electric current: ampere: A = C/s = W/V A J electric current density: ampere per square metre A/m 2: A⋅m −2: U, ΔV; Δϕ; E, ξ potential difference; voltage; electromotive force: volt: V = J/C kg⋅m 2 ⋅s −3 ⋅A −1: R; Z; X electric resistance; impedance; reactance: ohm: Ω = V/A kg⋅m 2 ⋅s ...
In physics, specifically in electromagnetism, the Lorentz force law is the combination of electric and magnetic force on a point charge due to electromagnetic fields. The Lorentz force , on the other hand, is a physical effect that occurs in the vicinity of electrically neutral, current-carrying conductors causing moving electrical charges to ...