enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Isentropic process - Wikipedia

    en.wikipedia.org/wiki/Isentropic_process

    Most steady-flow devices operate under adiabatic conditions, and the ideal process for these devices is the isentropic process. The parameter that describes how efficiently a device approximates a corresponding isentropic device is called isentropic or adiabatic efficiency.

  3. Thermodynamic process - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_process

    An isentropic process is customarily defined as an idealized quasi-static reversible adiabatic process, of transfer of energy as work. Otherwise, for a constant-entropy process, if work is done irreversibly, heat transfer is necessary, so that the process is not adiabatic, and an accurate artificial control mechanism is necessary; such is ...

  4. Thermodynamic cycle - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_cycle

    In the process of passing through a cycle, the working fluid (system) may convert heat from a warm source into useful work, and dispose of the remaining heat to a cold sink, thereby acting as a heat engine. Conversely, the cycle may be reversed and use work to move heat from a cold source and transfer it to a warm sink thereby acting as a heat ...

  5. Adiabatic process - Wikipedia

    en.wikipedia.org/wiki/Adiabatic_process

    An adiabatic process (adiabatic from Ancient Greek ἀδιάβατος (adiábatos) 'impassable') is a type of thermodynamic process that occurs without transferring heat between the thermodynamic system and its environment. Unlike an isothermal process, an adiabatic process transfers energy to the surroundings only as work and/or mass flow.

  6. Brayton cycle - Wikipedia

    en.wikipedia.org/wiki/Brayton_cycle

    The Brayton cycle, also known as the Joule cycle, is a thermodynamic cycle that describes the operation of certain heat engines that have air or some other gas as their working fluid. It is characterized by isentropic compression and expansion, and isobaric heat addition and rejection, though practical engines have adiabatic rather than ...

  7. Carnot cycle - Wikipedia

    en.wikipedia.org/wiki/Carnot_cycle

    Isentropic (reversible adiabatic) expansion of the gas (isentropic work output). For this step (2 to 3 on Figure 1, B to C in Figure 2) the gas in the engine is thermally insulated from both the hot and cold reservoirs, thus they neither gain nor lose heat. It is an adiabatic process. The gas continues to expand with reduction of its pressure ...

  8. Heat capacity ratio - Wikipedia

    en.wikipedia.org/wiki/Heat_capacity_ratio

    This ratio gives the important relation for an isentropic (quasistatic, reversible, adiabatic process) process of a simple compressible calorically-perfect ideal gas: is constant. Using the ideal gas law, =: is constant

  9. Thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Thermodynamics

    Isentropic process: a reversible adiabatic process, occurs at a constant entropy; Isobaric process: occurs at constant pressure; Isochoric process: occurs at constant volume (also called isometric/isovolumetric) Isothermal process: occurs at a constant temperature; Steady state process: occurs without a change in the internal energy