enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orbital period - Wikipedia

    en.wikipedia.org/wiki/Orbital_period

    The Earth's motion does not determine this value for other planets because an Earth observer is not orbited by the moons in question. For example, Deimos's synodic period is 1.2648 days, 0.18% longer than Deimos's sidereal period of 1.2624 d. [citation needed]

  3. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    The orbits are ellipses, with foci F 1 and F 2 for Planet 1, and F 1 and F 3 for Planet 2. The Sun is at F 1. The shaded areas A 1 and A 2 are equal, and are swept out in equal times by Planet 1's orbit. The ratio of Planet 1's orbit time to Planet 2's is (/) /.

  4. Neptune - Wikipedia

    en.wikipedia.org/wiki/Neptune

    Neptune's mass of 1.0243 × 10 26 kg [8] is intermediate between Earth and the larger gas giants: it is 17 times that of Earth but just 1/19th that of Jupiter. [ g ] Its gravity at 1 bar is 11.15 m/s 2 , 1.14 times the surface gravity of Earth, [ 71 ] and surpassed only by Jupiter. [ 72 ]

  5. Celestial mechanics - Wikipedia

    en.wikipedia.org/wiki/Celestial_mechanics

    Orbital mechanics is a core discipline within space-mission design and control. Celestial mechanics treats more broadly the orbital dynamics of systems under the influence of gravity , including both spacecraft and natural astronomical bodies such as star systems , planets , moons , and comets .

  6. List of gravitationally rounded objects of the Solar System

    en.wikipedia.org/wiki/List_of_gravitationally...

    1.327×10 20: Density: g/cm 3: 1.409 Equatorial gravity: m/s 2 g: 274.0 27.94 Escape velocity: km/s: 617.7 Rotation period days: 25.38 Orbital period about Galactic Center [4] million years 225–250 Mean orbital speed [4] km/s: ≈ 220 Axial tilt to the ecliptic: deg. 7.25 Axial tilt to the galactic plane: deg. 67.23 Mean surface temperature ...

  7. Dermott's law - Wikipedia

    en.wikipedia.org/wiki/Dermott's_law

    Where T(n) is the orbital period of the n th satellite, T(0) is of the order of days and C is a constant of the satellite system in question. Specific values are: Specific values are: Jovian system : T (0) = 0.444 d , C = 2.03

  8. Stability of the Solar System - Wikipedia

    en.wikipedia.org/wiki/Stability_of_the_Solar_System

    Another common form of resonance in the Solar System is spin–orbit resonance, where the rotation period (the time it takes the planet or moon to rotate once about its axis) has a simple numerical relationship with its orbital period. An example is the Moon, which is in a 1:1 spin–orbit resonance that keeps its far side away from

  9. Sidereal time - Wikipedia

    en.wikipedia.org/wiki/Sidereal_time

    Venus rotates retrograde with a sidereal day lasting about 243.0 Earth days, or about 1.08 times its orbital period of 224.7 Earth days; hence by the retrograde formula its solar day is about 116.8 Earth days, and it has about 1.9 solar days per orbital period.