Search results
Results from the WOW.Com Content Network
In telecommunications and transmission line theory, the reflection coefficient is the ratio of the complex amplitude of the reflected wave to that of the incident wave. The voltage and current at any point along a transmission line can always be resolved into forward and reflected traveling waves given a specified reference impedance Z 0.
Thinfilm is a web interface that implements the transfer-matrix method, outputting reflection and transmission coefficients, and also ellipsometric parameters Psi and Delta. Luxpop.com is another web interface that implements the transfer-matrix method.
In radio frequency (RF) practice this is often measured in a dimensionless ratio known as voltage standing wave ratio (VSWR) with a VSWR bridge. The ratio of energy bounced back depends on the impedance mismatch. Mathematically, it is defined using the reflection coefficient. [2]
We call the fraction of the incident power that is reflected from the interface the reflectance (or reflectivity, or power reflection coefficient) R, and the fraction that is refracted into the second medium is called the transmittance (or transmissivity, or power transmission coefficient) T.
Light waves change phase by 180° when they reflect from the surface of a medium with higher refractive index than that of the medium in which they are travelling. [1] A light wave travelling in air that is reflected by a glass barrier will undergo a 180° phase change, while light travelling in glass will not undergo a phase change if it is reflected by a boundary with air.
— A web application that draws the Standing Wave Diagram and calculates the SWR, input impedance, reflection coefficient and more "Reflection and VSWR". fourier-series.com. RF concepts. — A flash demonstration of transmission line reflection and SWR "VSWR". telestrian.co.uk. — An online conversion tool between SWR, return loss and ...
To the left of the critical angle is the region of partial reflection; here both reflection coefficients are real (phase 0° or 180°) with magnitudes less than 1. To the right of the critical angle is the region of total reflection; there both reflection coefficients are complex with magnitudes equal to 1.
Refraction of light at the interface between two media of different refractive indices, with n 2 > n 1.Since the velocity is lower in the second medium (v 2 < v 1), the angle of refraction θ 2 is less than the angle of incidence θ 1; that is, the ray in the higher-index medium is closer to the normal.