Search results
Results from the WOW.Com Content Network
The names "lambda abstraction", "lambda function", and "lambda expression" refer to the notation of function abstraction in lambda calculus, where the usual function f (x) = M would be written (λx. M), and where M is an expression that uses x. Compare to the Python syntax of lambda x: M.
This definition recognizes a lambda abstraction with an actual parameter as defining a function. Only lambda abstractions without an application are treated as anonymous functions. lambda-named A named function. An expression like (.) where M is lambda free and N is lambda free or an anonymous function.
Dirichlet lambda function, λ(s) = (1 – 2 −s)ζ(s) where ζ is the Riemann zeta function; Liouville function, λ(n) = (–1) Ω(n) Von Mangoldt function, Λ(n) = log p if n is a positive power of the prime p; Modular lambda function, λ(τ), a highly symmetric holomorphic function on the complex upper half-plane
An example of such a function is the function that returns 0 for all even integers, and 1 for all odd integers. In lambda calculus , from a computational point of view, applying a fixed-point combinator to an identity function or an idempotent function typically results in non-terminating computation.
Although Goodman and Kruskal's lambda is a simple way to assess the association between variables, it yields a value of 0 (no association) whenever two variables are in accord—that is, when the modal category is the same for all values of the independent variable, even if the modal frequencies or percentages vary. As an example, consider the ...
The Carmichael lambda function of a prime power can be expressed in terms of the Euler totient. Any number that is not 1 or a prime power can be written uniquely as the product of distinct prime powers, in which case λ of the product is the least common multiple of the λ of the prime power factors.
The examples 1 and 2 denote different terms, differing only in where the parentheses are placed. They have different meanings: example 1 is a function definition, while example 2 is a function application. The lambda variable x is a placeholder in both examples. Here, example 1 defines a function .
In computational number theory and computational algebra, Pollard's kangaroo algorithm (also Pollard's lambda algorithm, see Naming below) is an algorithm for solving the discrete logarithm problem. The algorithm was introduced in 1978 by the number theorist John M. Pollard , in the same paper as his better-known Pollard's rho algorithm for ...