Search results
Results from the WOW.Com Content Network
The degree of a group of permutations of a finite set is the number of elements in the set. The order of a group (of any type) is the number of elements (cardinality) in the group. By Lagrange's theorem, the order of any finite permutation group of degree n must divide n! since n-factorial is the order of the symmetric group S n.
The simplest example is the Klein four-group acting on the vertices of a square, which preserves the partition into diagonals. On the other hand, if a permutation group preserves only trivial partitions, it is transitive, except in the case of the trivial group acting on a 2-element set.
Moreover, the positions of the zeroes in the inversion table give the values of left-to-right maxima of the permutation (in the example 6, 8, 9) while the positions of the zeroes in the Lehmer code are the positions of the right-to-left minima (in the example positions the 4, 8, 9 of the values 1, 2, 5); this allows computing the distribution ...
Combinations and permutations in the mathematical sense are described in several articles. Described together, in-depth: Twelvefold way; Explained separately in a more accessible way: Combination; Permutation; For meanings outside of mathematics, please see both words’ disambiguation pages: Combination (disambiguation) Permutation ...
Frobenius group; Galois group of a polynomial; Jucys–Murphy element; Landau's function; Oligomorphic group; O'Nan–Scott theorem; Parker vector; Permutation group; Place-permutation action; Primitive permutation group; Rank 3 permutation group; Representation theory of the symmetric group; Schreier vector; Strong generating set; Symmetric ...
move to sidebar hide. From Wikipedia, the free encyclopedia
The Schreier–Sims algorithm is an algorithm in computational group theory, named after the mathematicians Otto Schreier and Charles Sims.This algorithm can find the order of a finite permutation group, determine whether a given permutation is a member of the group, and other tasks in polynomial time.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more