Search results
Results from the WOW.Com Content Network
The degree of a group of permutations of a finite set is the number of elements in the set. The order of a group (of any type) is the number of elements (cardinality) in the group. By Lagrange's theorem, the order of any finite permutation group of degree n must divide n! since n-factorial is the order of the symmetric group S n.
Combinations and permutations in the mathematical sense are described in several articles. Described together, in-depth: Twelvefold way; Explained separately in a more accessible way: Combination; Permutation; For meanings outside of mathematics, please see both words’ disambiguation pages: Combination (disambiguation) Permutation ...
Permutations without repetition on the left, with repetition to their right. If M is a finite multiset, then a multiset permutation is an ordered arrangement of elements of M in which each element appears a number of times equal exactly to its multiplicity in M. An anagram of a word having some repeated letters is an example of a multiset ...
Frobenius group; Galois group of a polynomial; Jucys–Murphy element; Landau's function; Oligomorphic group; O'Nan–Scott theorem; Parker vector; Permutation group; Place-permutation action; Primitive permutation group; Rank 3 permutation group; Representation theory of the symmetric group; Schreier vector; Strong generating set; Symmetric ...
The simplest example is the Klein four-group acting on the vertices of a square, which preserves the partition into diagonals. On the other hand, if a permutation group preserves only trivial partitions, it is transitive, except in the case of the trivial group acting on a 2-element set.
move to sidebar hide. From Wikipedia, the free encyclopedia
This page was last edited on 8 February 2021, at 12:11 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
This Frobenius group acts simply transitively on the 21 flags in the Fano plane, i.e. lines with marked points. The dihedral group of order 2n with n odd is a Frobenius group with complement of order 2. More generally if K is any abelian group of odd order and H has order 2 and acts on K by inversion, then the semidirect product K.H is a ...