Ad
related to: underdetermined linear system examples
Search results
Results from the WOW.Com Content Network
An underdetermined linear system has either no solution or infinitely many solutions. For example, + + = + + = is an underdetermined system without any solution; any system of equations having no solution is said to be inconsistent. On the other hand, the system
The system + =, + = has exactly one solution: x = 1, y = 2 The nonlinear system + =, + = has the two solutions (x, y) = (1, 0) and (x, y) = (0, 1), while + + =, + + =, + + = has an infinite number of solutions because the third equation is the first equation plus twice the second one and hence contains no independent information; thus any value of z can be chosen and values of x and y can be ...
A linear system in three variables determines a collection of planes. The intersection point is the solution. In mathematics, a system of linear equations (or linear system) is a collection of two or more linear equations involving the same variables. [1] [2] For example,
In order to choose a solution to such a system, one must impose extra constraints or conditions (such as smoothness) as appropriate. In compressed sensing, one adds the constraint of sparsity, allowing only solutions which have a small number of nonzero coefficients. Not all underdetermined systems of linear equations have a sparse solution.
Consider a linear non-homogeneous ordinary differential equation of the form = + (+) = where () denotes the i-th derivative of , and denotes a function of .. The method of undetermined coefficients provides a straightforward method of obtaining the solution to this ODE when two criteria are met: [2]
Consider the system of linear equations: L i = 0 for 1 ≤ i ≤ M, and variables X 1, X 2, ..., X N, where each L i is a weighted sum of the X i s. Then X 1 = X 2 = ⋯ = X N = 0 is always a solution. When M < N the system is underdetermined and there are always an infinitude of further solutions.
For a system of linear equations, the number of equations in an indeterminate system could be the same as the number of unknowns, less than the number of unknowns (an underdetermined system), or greater than the number of unknowns (an overdetermined system). Conversely, any of those three cases may or may not be indeterminate.
Assemble-to-order system; Linear programming decoding; Linear search problem — find a point on a line by moving along the line; Low-rank approximation — find best approximation, constraint is that rank of some matrix is smaller than a given number; Meta-optimization — optimization of the parameters in an optimization method
Ad
related to: underdetermined linear system examples