enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    The greatest common divisor (GCD) of integers a and b, at least one of which is nonzero, is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer.

  3. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    The GCD is said to be the generator of the ideal of a and b. This GCD definition led to the modern abstract algebraic concepts of a principal ideal (an ideal generated by a single element) and a principal ideal domain (a domain in which every ideal is a principal ideal). Certain problems can be solved using this result. [60]

  4. List of aircraft registration prefixes - Wikipedia

    en.wikipedia.org/wiki/List_of_aircraft...

    EW-10000 to EW-99999 (ex-Soviet Union registrations)EW-100AA to EW-999ZZ (aircraft in general, except those listed below) EW-200PA to EW-299PA (reserved for Boeing 737 aircraft)

  5. Gaussian integer - Wikipedia

    en.wikipedia.org/wiki/Gaussian_integer

    As for any unique factorization domain, a greatest common divisor (gcd) of two Gaussian integers a, b is a Gaussian integer d that is a common divisor of a and b, which has all common divisors of a and b as divisor. That is (where | denotes the divisibility relation), d | a and d | b, and; c | a and c | b implies c | d.

  6. Bézout's identity - Wikipedia

    en.wikipedia.org/wiki/Bézout's_identity

    Here the greatest common divisor of 0 and 0 is taken to be 0.The integers x and y are called Bézout coefficients for (a, b); they are not unique.A pair of Bézout coefficients can be computed by the extended Euclidean algorithm, and this pair is, in the case of integers one of the two pairs such that | x | ≤ | b/d | and | y | ≤ | a/d |; equality occurs only if one of a and b is a multiple ...

  7. Coprime integers - Wikipedia

    en.wikipedia.org/wiki/Coprime_integers

    A fast way to determine whether two numbers are coprime is given by the Euclidean algorithm and its faster variants such as binary GCD algorithm or Lehmer's GCD algorithm. The number of integers coprime with a positive integer n, between 1 and n, is given by Euler's totient function, also known as Euler's phi function, φ(n).

  8. Euclidean domain - Wikipedia

    en.wikipedia.org/wiki/Euclidean_domain

    In mathematics, more specifically in ring theory, a Euclidean domain (also called a Euclidean ring) is an integral domain that can be endowed with a Euclidean function which allows a suitable generalization of Euclidean division of integers.

  9. Maximal common divisor - Wikipedia

    en.wikipedia.org/wiki/Maximal_common_divisor

    In abstract algebra, particularly ring theory, maximal common divisors are an abstraction of the number theory concept of greatest common divisor (GCD). This definition is slightly more general than GCDs, and may exist in rings in which GCDs do not. Halter-Koch (1998) provides the following definition. [1]