Search results
Results from the WOW.Com Content Network
This popular sorting algorithm has an average-case performance of O(n log(n)), which contributes to making it a very fast algorithm in practice. But given a worst-case input, its performance degrades to O(n 2). Also, when implemented with the "shortest first" policy, the worst-case space complexity is instead bounded by O(log(n)).
The worstsort algorithm is based on a bad sorting algorithm, badsort. The badsort algorithm accepts two parameters: L, which is the list to be sorted, and k, which is a recursion depth. At recursion level k = 0, badsort merely uses a common sorting algorithm, such as bubblesort, to sort its inputs and return
sort is a generic function in the C++ Standard Library for doing comparison sorting.The function originated in the Standard Template Library (STL).. The specific sorting algorithm is not mandated by the language standard and may vary across implementations, but the worst-case asymptotic complexity of the function is specified: a call to sort must perform no more than O(N log N) comparisons ...
Sorting algorithms are prevalent in introductory computer science classes, where the abundance of algorithms for the problem provides a gentle introduction to a variety of core algorithm concepts, such as big O notation, divide-and-conquer algorithms, data structures such as heaps and binary trees, randomized algorithms, best, worst and average ...
Introsort or introspective sort is a hybrid sorting algorithm that provides both fast average performance and (asymptotically) optimal worst-case performance. It begins with quicksort, it switches to heapsort when the recursion depth exceeds a level based on (the logarithm of) the number of elements being sorted and it switches to insertion sort when the number of elements is below some threshold.
The best case input is an array that is already sorted. In this case insertion sort has a linear running time (i.e., O(n)). During each iteration, the first remaining element of the input is only compared with the right-most element of the sorted subsection of the array. The simplest worst case input is an array sorted in reverse order.
The difference between pigeonhole sort and counting sort is that in counting sort, the auxiliary array does not contain lists of input elements, only counts: 3: 1; 4: 0; 5: 2; 6: 0; 7: 0; 8: 1; For arrays where N is much larger than n, bucket sort is a generalization that is more efficient in space and time.
Bottom-up heapsort is a variant that reduces the number of comparisons required by a significant factor. While ordinary "top-down" heapsort requires 2n log 2 n + O(n) comparisons worst-case and on average, [10] the bottom-up variant requires n log 2 n + O(1) comparisons on average, [10] and 1.5n log 2 n + O(n) in the worst case. [11]