Search results
Results from the WOW.Com Content Network
Toroidal machines can be axially symmetric, like the tokamak and the reversed field pinch (RFP), or asymmetric, like the stellarator.The additional degree of freedom gained by giving up toroidal symmetry might ultimately be usable to produce better confinement, but the cost is complexity in the engineering, the theory, and the experimental diagnostics.
A wide variety of experiments on the system demonstrated that the ions were thermalizing at about 15 million Kelvin, much hotter than ZETA and hot enough to explain the neutrons if they were from fusion reactions. This was the first clear evidence that thermonuclear fusion reactions of deuterium in the lab were possible. [23] [24]
Staff are applying knowledge gained in fusion research to a number of theoretical and experimental areas including materials science, solar physics, chemistry, and manufacturing. PPPL also aims to speed the development of fusion energy through the development of an increased number of public-private partnerships.
Three founders of the laboratory with Pierre-Gilles have established and developed there three research features that are still presented: reach a relation between material properties and the problems of matter organization, couple experiment with theory and develop physical instrumentation for answering these questions.
Supernova nucleosynthesis is the nucleosynthesis of chemical elements in supernova explosions.. In sufficiently massive stars, the nucleosynthesis by fusion of lighter elements into heavier ones occurs during sequential hydrostatic burning processes called helium burning, carbon burning, oxygen burning, and silicon burning, in which the byproducts of one nuclear fuel become, after ...
The goal of the theory of nucleosynthesis is to explain the vastly differing abundances of the chemical elements and their several isotopes from the perspective of natural processes. The primary stimulus to the development of this theory was the shape of a plot of the abundances versus the atomic number of the elements.
Muon-catalyzed fusion (abbreviated as μCF or MCF) is a process allowing nuclear fusion to take place at temperatures significantly lower than the temperatures required for thermonuclear fusion, even at room temperature or lower. It is one of the few known ways of catalyzing nuclear fusion reactions.
The theory of BBN gives a detailed mathematical description of the production of the light "elements" deuterium, helium-3, helium-4, and lithium-7. Specifically, the theory yields precise quantitative predictions for the mixture of these elements, that is, the primordial abundances at the end of the big-bang.