enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Abstraction (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Abstraction_(mathematics)

    Abstraction in mathematics is the process of extracting the underlying structures, patterns or properties of a mathematical concept, removing any dependence on real world objects with which it might originally have been connected, and generalizing it so that it has wider applications or matching among other abstract descriptions of equivalent phenomena.

  3. Class (set theory) - Wikipedia

    en.wikipedia.org/wiki/Class_(set_theory)

    Examples include the class of all groups, the class of all vector spaces, and many others. In category theory, a category whose collection of objects forms a proper class (or whose collection of morphisms forms a proper class) is called a large category. The surreal numbers are a proper class of objects that have the properties of a field.

  4. Judgment (mathematical logic) - Wikipedia

    en.wikipedia.org/wiki/Judgment_(mathematical_logic)

    In general, a judgment may be any inductively definable assertion in the metatheory. Judgments are used in formalizing deduction systems: a logical axiom expresses a judgment, premises of a rule of inference are formed as a sequence of judgments, and their conclusion is a judgment as well (thus, hypotheses and conclusions of proofs are judgments).

  5. Well-defined expression - Wikipedia

    en.wikipedia.org/wiki/Well-defined_expression

    Despite these subtle logical problems, it is quite common to use the term definition (without apostrophes) for "definitions" of this kind, for three reasons: It provides a handy shorthand of the two-step approach. The relevant mathematical reasoning (i.e., step 2) is the same in both cases. In mathematical texts, the assertion is "up to 100%" true.

  6. Set theory - Wikipedia

    en.wikipedia.org/wiki/Set_theory

    Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects.Although objects of any kind can be collected into a set, set theory – as a branch of mathematics – is mostly concerned with those that are relevant to mathematics as a whole.

  7. Foundations of mathematics - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_mathematics

    These problems were also studied by mathematicians, and this led to establish mathematical logic as a new area of mathematics, consisting of providing mathematical definitions to logics (sets of inference rules), mathematical and logical theories, theorems, and proofs, and of using mathematical methods to prove theorems about these concepts.

  8. Mathematical structure - Wikipedia

    en.wikipedia.org/wiki/Mathematical_structure

    A geometry: it is equipped with a metric and is flat. A topology: there is a notion of open sets. There are interfaces among these: Its order and, independently, its metric structure induce its topology. Its order and algebraic structure make it into an ordered field.

  9. Axiom - Wikipedia

    en.wikipedia.org/wiki/Axiom

    The precise definition varies across fields of study. In classic philosophy, an axiom is a statement that is so evident or well-established, that it is accepted without controversy or question. [3] In modern logic, an axiom is a premise or starting point for reasoning. [4] In mathematics, an axiom may be a "logical axiom" or a "non-logical axiom".