Search results
Results from the WOW.Com Content Network
The closeness of a match is measured in terms of the number of primitive operations necessary to convert the string into an exact match. This number is called the edit distance between the string and the pattern. The usual primitive operations are: [1] insertion: cot → coat; deletion: coat → cot
A simple and inefficient way to see where one string occurs inside another is to check at each index, one by one. First, we see if there is a copy of the needle starting at the first character of the haystack; if not, we look to see if there's a copy of the needle starting at the second character of the haystack, and so forth.
In this example, we will consider a dictionary consisting of the following words: {a, ab, bab, bc, bca, c, caa}. The graph below is the Aho–Corasick data structure constructed from the specified dictionary, with each row in the table representing a node in the trie, with the column path indicating the (unique) sequence of characters from the root to the node.
P denotes the string to be searched for, called the pattern. Its length is m. S[i] denotes the character at index i of string S, counting from 1. S[i..j] denotes the substring of string S starting at index i and ending at j, inclusive. A prefix of S is a substring S[1..i] for some i in range [1, l], where l is the length of S.
In computer science, an algorithm for matching wildcards (also known as globbing) is useful in comparing text strings that may contain wildcard syntax. [1] Common uses of these algorithms include command-line interfaces, e.g. the Bourne shell [2] or Microsoft Windows command-line [3] or text editor or file manager, as well as the interfaces for some search engines [4] and databases. [5]
A match is made, not when all the atoms of the string are matched, but rather when all the pattern atoms in the regex have matched. The idea is to make a small pattern of characters stand for a large number of possible strings, rather than compiling a large list of all the literal possibilities.
In computer science, the Knuth–Morris–Pratt algorithm (or KMP algorithm) is a string-searching algorithm that searches for occurrences of a "word" W within a main "text string" S by employing the observation that when a mismatch occurs, the word itself embodies sufficient information to determine where the next match could begin, thus bypassing re-examination of previously matched characters.
An extension of word vectors for creating a dense vector representation of unstructured radiology reports has been proposed by Banerjee et al. [23] One of the biggest challenges with Word2vec is how to handle unknown or out-of-vocabulary (OOV) words and morphologically similar words. If the Word2vec model has not encountered a particular word ...