Search results
Results from the WOW.Com Content Network
A lattice in the sense of a 3-dimensional array of regularly spaced points coinciding with e.g. the atom or molecule positions in a crystal, or more generally, the orbit of a group action under translational symmetry, is a translation of the translation lattice: a coset, which need not contain the origin, and therefore need not be a lattice in ...
A lattice in a locally compact topological group is a discrete subgroup with the property that the quotient space has finite invariant measure. In the special case of subgroups of R n , this amounts to the usual geometric notion of a lattice , and both the algebraic structure of lattices and the geometry of the totality of all lattices are ...
The oblique lattice is one of the five two-dimensional Bravais lattice types. [1] The symmetry category of the lattice is wallpaper group p2. The primitive translation vectors of the oblique lattice form an angle other than 90° and are of unequal lengths.
In geometry and mathematical group theory, a unimodular lattice is an integral lattice of determinant 1 or −1. For a lattice in n-dimensional Euclidean space, this is equivalent to requiring that the volume of any fundamental domain for the lattice be 1. The E 8 lattice and the Leech lattice are two famous examples.
The honeycomb point set is a special case of the hexagonal lattice with a two-atom basis. [1] The centers of the hexagons of a honeycomb form a hexagonal lattice, and the honeycomb point set can be seen as the union of two offset hexagonal lattices. In nature, carbon atoms of the two-dimensional material graphene are arranged in a honeycomb ...
For example, a crystal, viewed as a lattice with a single kind of atom located at every lattice point (the simplest basis form), may also be viewed as a lattice with a basis of two atoms. In this case, a primitive unit cell is a unit cell having only one lattice point in the first way of describing the crystal in order to ensure the smallest ...
Let be a locally compact group and a discrete subgroup (this means that there exists a neighbourhood of the identity element of such that = {}).Then is called a lattice in if in addition there exists a Borel measure on the quotient space / which is finite (i.e. (/) < +) and -invariant (meaning that for any and any open subset / the equality () = is satisfied).
The structures of minerals provide good examples of regularly repeating three-dimensional arrays. Despite the hundreds of thousands of known minerals, there are rather few possible types of arrangement of atoms in a crystal , defined by crystal structure , crystal system , and point group ; for example, there are exactly 14 Bravais lattices for ...