Search results
Results from the WOW.Com Content Network
Next to the intersecting chords theorem and the tangent-secant theorem, the intersecting secants theorem represents one of the three basic cases of a more general theorem about two intersecting lines and a circle - the power of point theorem.
Common lines and line segments on a circle, including a secant. A straight line can intersect a circle at zero, one, or two points. A line with intersections at two points is called a secant line, at one point a tangent line and at no points an exterior line. A chord is the line segment that joins two distinct points of a circle. A chord is ...
The tangent-secant theorem can be proven using similar triangles (see graphic). Like the intersecting chords theorem and the intersecting secants theorem, the tangent-secant theorem represents one of the three basic cases of a more general theorem about two intersecting lines and a circle, namely, the power of point theorem.
A tangent line t to a circle C intersects the circle at a single point T. For comparison, secant lines intersect a circle at two points, whereas another line may not intersect a circle at all. This property of tangent lines is preserved under many geometrical transformations, such as scalings, rotation, translations, inversions, and map ...
If is tangent then = and the statement is the tangent-secant theorem. Intersecting chords theorem: For a point inside a circle and the intersection points , of a secant line with the following statement is true: | | | | = (), hence the product is independent of line .
Next to the tangent-secant theorem and the intersecting secants theorem the intersecting chords theorem represents one of the three basic cases of a more general theorem about two intersecting lines and a circle - the power of point theorem.
a) different tangent lines (transversal intersection, after transversality), or b) the tangent line in common and they are crossing each other ( touching intersection , after tangency ). If both the curves have a point S and the tangent line there in common but do not cross each other, they are just touching at point S .
The external secant or external distance of a curved track section is the shortest distance between the track and the intersection of the tangent lines from the ends of the arc, which equals the radius times the trigonometric exsecant of half the central angle subtended by the arc, . [12] By comparison, the versed sine of a curved track ...