enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Basis (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Basis_(linear_algebra)

    The same vector can be represented in two different bases (purple and red arrows). In mathematics, a set B of vectors in a vector space V is called a basis (pl.: bases) if every element of V may be written in a unique way as a finite linear combination of elements of B.

  3. Change of basis - Wikipedia

    en.wikipedia.org/wiki/Change_of_basis

    Consider a linear map T: W → V from a vector space W of dimension n to a vector space V of dimension m. It is represented on "old" bases of V and W by a m × n matrix M . A change of bases is defined by an m × m change-of-basis matrix P for V , and an n × n change-of-basis matrix Q for W .

  4. Vector space - Wikipedia

    en.wikipedia.org/wiki/Vector_space

    A subset of a vector space is a basis if its elements are linearly independent and span the vector space. [13] Every vector space has at least one basis, or many in general (see Basis (linear algebra) § Proof that every vector space has a basis). [14]

  5. Dual basis - Wikipedia

    en.wikipedia.org/wiki/Dual_basis

    The association of a dual basis with a basis gives a map from the space of bases of V to the space of bases of V ∗, and this is also an isomorphism. For topological fields such as the real numbers, the space of duals is a topological space , and this gives a homeomorphism between the Stiefel manifolds of bases of these spaces.

  6. Covariance and contravariance of vectors - Wikipedia

    en.wikipedia.org/wiki/Covariance_and_contra...

    A covector or cotangent vector has components that co-vary with a change of basis in the corresponding (initial) vector space. That is, the components must be transformed by the same matrix as the change of basis matrix in the corresponding (initial) vector space. The components of covectors (as opposed to those of vectors) are said to be ...

  7. Standard basis - Wikipedia

    en.wikipedia.org/wiki/Standard_basis

    Every vector a in three dimensions is a linear combination of the standard basis vectors i, j and k.. In mathematics, the standard basis (also called natural basis or canonical basis) of a coordinate vector space (such as or ) is the set of vectors, each of whose components are all zero, except one that equals 1. [1]

  8. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    The row space of this matrix is the vector space spanned by the row vectors. The column vectors of a matrix. The column space of this matrix is the vector space spanned by the column vectors. In linear algebra, the column space (also called the range or image) of a matrix A is the span (set of all possible linear combinations) of its column ...

  9. Basis function - Wikipedia

    en.wikipedia.org/wiki/Basis_function

    In mathematics, a basis function is an element of a particular basis for a function space.Every function in the function space can be represented as a linear combination of basis functions, just as every vector in a vector space can be represented as a linear combination of basis vectors.