enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cardinality - Wikipedia

    en.wikipedia.org/wiki/Cardinality

    There are two ways to define the "cardinality of a set": The cardinality of a set A is defined as its equivalence class under equinumerosity. A representative set is designated for each equivalence class. The most common choice is the initial ordinal in that class. This is usually taken as the definition of cardinal number in axiomatic set theory.

  3. Finite set - Wikipedia

    en.wikipedia.org/wiki/Finite_set

    That is, the power setof a finite set S is finite, with cardinality | |. Any subset of a finite set is finite. The set of values of a function when applied to elements of a finite set is finite. All finite sets are countable, but not all countable sets are finite. (Some authors, however, use "countable" to mean "countably infinite", so do ...

  4. Cardinal number - Wikipedia

    en.wikipedia.org/wiki/Cardinal_number

    In the case of a finite set, its cardinal number, or cardinality is therefore a natural number. For dealing with the case of infinite sets , the infinite cardinal numbers have been introduced, which are often denoted with the Hebrew letter ℵ {\displaystyle \aleph } ( aleph ) marked with subscript indicating their rank among the infinite ...

  5. Cantor's theorem - Wikipedia

    en.wikipedia.org/wiki/Cantor's_theorem

    As a consequence, the cardinality of the real numbers, which is the same as that of the power set of the integers, is strictly larger than the cardinality of the integers; see Cardinality of the continuum for details. The theorem is named for Georg Cantor, who first stated and proved it at the end of the 19th century.

  6. Set (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Set_(mathematics)

    A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...

  7. Set-theoretic definition of natural numbers - Wikipedia

    en.wikipedia.org/wiki/Set-theoretic_definition...

    The definition of a finite set is given independently of natural numbers: [3] Definition: A set is finite if and only if any non empty family of its subsets has a minimal element for the inclusion order. Definition: a cardinal n is a natural number if and only if there exists a finite set of which the cardinal is n. 0 = Card (∅)

  8. Inclusion–exclusion principle - Wikipedia

    en.wikipedia.org/wiki/Inclusion–exclusion...

    where A and B are two finite sets and |S| indicates the cardinality of a set S (which may be considered as the number of elements of the set, if the set is finite). The formula expresses the fact that the sum of the sizes of the two sets may be too large since some elements may be counted twice.

  9. Von Neumann cardinal assignment - Wikipedia

    en.wikipedia.org/wiki/Von_Neumann_cardinal...

    Any well-ordered set having that ordinal as its order type has the same cardinality. The smallest ordinal having a given cardinal as its cardinality is called the initial ordinal of that cardinal. Every finite ordinal (natural number) is initial, but most infinite ordinals are not initial.