Search results
Results from the WOW.Com Content Network
The Wilcoxon signed-rank test is a non-parametric rank test for statistical hypothesis testing used either to test the location of a population based on a sample of data, or to compare the locations of two populations using two matched samples. [1] The one-sample version serves a purpose similar to that of the one-sample Student's t-test. [2]
The Wald–Wolfowitz runs test (or simply runs test), named after statisticians Abraham Wald and Jacob Wolfowitz is a non-parametric statistical test that checks a randomness hypothesis for a two-valued data sequence. More precisely, it can be used to test the hypothesis that the elements of the sequence are mutually independent.
The Mann–Whitney test (also called the Mann–Whitney–Wilcoxon (MWW/MWU), Wilcoxon rank-sum test, or Wilcoxon–Mann–Whitney test) is a nonparametric statistical test of the null hypothesis that, for randomly selected values X and Y from two populations, the probability of X being greater than Y is equal to the probability of Y being greater than X.
The typical steps involved in performing a frequentist hypothesis test in practice are: Define a hypothesis (claim which is testable using data). Select a relevant statistical test with associated test statistic T. Derive the distribution of the test statistic under the null hypothesis from the assumptions.
The Kruskal–Wallis test by ranks, Kruskal–Wallis test (named after William Kruskal and W. Allen Wallis), or one-way ANOVA on ranks is a non-parametric statistical test for testing whether samples originate from the same distribution. [1] [2] [3] It is used for comparing two or more independent samples of equal or different sample sizes.
Illustration of the Kolmogorov–Smirnov statistic. The red line is a model CDF, the blue line is an empirical CDF, and the black arrow is the KS statistic.. In statistics, the Kolmogorov–Smirnov test (also K–S test or KS test) is a nonparametric test of the equality of continuous (or discontinuous, see Section 2.2), one-dimensional probability distributions.
Hypothesis (c) was of a different nature, as no parameter values are specified in the statement of the hypothesis; we might reasonably call such a hypothesis non-parametric. Hypothesis (d) is also non-parametric but, in addition, it does not even specify the underlying form of the distribution and may now be reasonably termed distribution-free ...
A one-sample Student's t-test is a location test of whether the mean of a population has a value specified in a null hypothesis. In testing the null hypothesis that the population mean is equal to a specified value μ 0 , one uses the statistic