Ad
related to: harmonic equation math
Search results
Results from the WOW.Com Content Network
In mathematics, mathematical physics and the theory of stochastic processes, a harmonic function is a twice continuously differentiable function:, where U is an open subset of , that satisfies Laplace's equation, that is, + + + = everywhere on U.
In mathematics, the harmonic series is the infinite series formed by summing all positive unit fractions: = = + + + + +. The first n {\displaystyle n} terms of the series sum to approximately ln n + γ {\displaystyle \ln n+\gamma } , where ln {\displaystyle \ln } is the natural logarithm and γ ≈ 0.577 {\displaystyle \gamma \approx 0.577 ...
Harmonic analysis is a branch of mathematics concerned with investigating the connections between a function and its representation in frequency.The frequency representation is found by using the Fourier transform for functions on unbounded domains such as the full real line or by Fourier series for functions on bounded domains, especially periodic functions on finite intervals.
In mathematics, a number of concepts employ the word harmonic.The similarity of this terminology to that of music is not accidental: the equations of motion of vibrating strings, drums and columns of air are given by formulas involving Laplacians; the solutions to which are given by eigenvalues corresponding to their modes of vibration.
In mathematics, the harmonic mean is a kind of average, ... The harmonic mean is related to the other Pythagorean means, as seen in the equation below.
A mass m attached to a spring of spring constant k exhibits simple harmonic motion in closed space. The equation for describing the period: = shows the period of oscillation is independent of the amplitude, though in practice the amplitude should be small. The above equation is also valid in the case when an additional constant force is being ...
In mathematics, a polynomial whose Laplacian is zero is termed a harmonic polynomial. [ 1 ] [ 2 ] The harmonic polynomials form a subspace of the vector space of polynomials over the given field .
Furthermore, a change of variables t = cos θ transforms this equation into the Legendre equation, whose solution is a multiple of the associated Legendre polynomial P m ℓ (cos θ). Finally, the equation for R has solutions of the form R(r) = A r ℓ + B r −ℓ − 1; requiring the solution to be regular throughout R 3 forces B = 0. [3]
Ad
related to: harmonic equation math