Search results
Results from the WOW.Com Content Network
Laser cutting works by directing the output of a high-power laser most commonly through optics. The laser optics and CNC (computer numerical control) are used to direct the laser beam to the material. A commercial laser for cutting materials uses a motion control system to follow a CNC or G-code of the pattern to be cut onto the material.
where t is the depth of cut, P is the laser beam power, v is the cutting velocity, and d is the laser beam spot diameter. [5] The depth of the cut is also influenced by the workpiece material. The material's reflectivity, density, specific heat, and melting point temperature all contribute to the lasers ability to cut the workpiece.
Laser drilling is the process of creating thru-holes, referred to as “popped” holes or “percussion drilled” holes, by repeatedly pulsing focused laser energy on a material. The diameter of these holes can be as small as 0.002” (~50 μm).
[The formula does not make clear over what the summation is done. P C = 1 n ⋅ ∑ p t p 0 {\displaystyle P_{C}={\frac {1}{n}}\cdot \sum {\frac {p_{t}}{p_{0}}}} On 17 August 2012 the BBC Radio 4 program More or Less [ 3 ] noted that the Carli index, used in part in the British retail price index , has a built-in bias towards recording ...
In laser science, the beam parameter product (BPP) is the product of a laser beam's divergence angle (half-angle) and the radius of the beam at its narrowest point (the beam waist). [1] The BPP quantifies the quality of a laser beam, and how well it can be focused to a small spot.
When a Gaussian laser beam is focused, the focused spot diameter is defined by d 00 = 4 λ f π D 00 {\displaystyle d_{00}={4\lambda f \over \pi D_{00}}} , (3) where d 00 is the ideal focused spot diameter, f is the focal length of the focusing lens, and D 00 is the input beam waist and is placed one focal length from the lens as shown in the ...
Cutting-stock problems can be classified in several ways. [1] One way is the dimensionality of the cutting: the above example illustrates a one-dimensional (1D) problem; other industrial applications of 1D occur when cutting pipes, cables, and steel bars. Two-dimensional (2D) problems are encountered in furniture, clothing and glass production.
Every method has its limitations in accuracy, cost, and effect on the material. For example, heat may damage the quality of heat treated alloys, and laser cutting is less suitable for highly reflective materials such as aluminum. [2] Laser cutting sheet metal produces flat parts and etches and engraves parts from complex or simple designs.