Search results
Results from the WOW.Com Content Network
Radon transform. Maps f on the (x, y)-domain to Rf on the (α, s)-domain.. In mathematics, the Radon transform is the integral transform which takes a function f defined on the plane to a function Rf defined on the (two-dimensional) space of lines in the plane, whose value at a particular line is equal to the line integral of the function over that line.
Using the inverse Fourier transform, the inverse Radon transform formula can be easily derived. (,) = ... The figure was generated by using MATLAB. ...
Take a two-dimensional function f(r), project (e.g. using the Radon transform) it onto a (one-dimensional) line, and do a Fourier transform of that projection. Take that same function, but do a two-dimensional Fourier transform first, and then slice it through its origin, which is parallel to the projection line. In operator terms, if
In mathematics, the Fourier transform (FT) is an integral transform that takes a function as input and outputs another function that describes the extent to which various frequencies are present in the original function. The output of the transform is a complex-valued function of frequency.
The Mojette transform is an application of discrete geometry. More specifically, it is a discrete and exact version of the Radon transform, thus a projection operator. The IRCCyN laboratory - UMR CNRS 6597 in Nantes, France has been developing it since 1994. The first characteristic of the Mojette transform is using only additions and subtractions.
In mathematics, in the area of harmonic analysis, the fractional Fourier transform (FRFT) is a family of linear transformations generalizing the Fourier transform.It can be thought of as the Fourier transform to the n-th power, where n need not be an integer — thus, it can transform a function to any intermediate domain between time and frequency.
Plot of normalized function (i.e. ()) with its spectral frequency components.. The unitary Fourier transforms of the rectangular function are [2] = = (), using ordinary frequency f, where is the normalized form [10] of the sinc function and = (/) / = (/), using angular frequency , where is the unnormalized form of the sinc function.
The Abel transform is one member of the FHA cycle of integral operators. For example, in two dimensions, if we define A as the Abel transform operator, F as the Fourier transform operator and H as the zeroth-order Hankel transform operator, then the special case of the projection-slice theorem for circularly symmetric functions states that