Search results
Results from the WOW.Com Content Network
An algebraic number is a number that is a root of a non-zero polynomial in one variable with integer (or, equivalently, rational) coefficients. For example, the golden ratio , ( 1 + 5 ) / 2 {\displaystyle (1+{\sqrt {5}})/2} , is an algebraic number, because it is a root of the polynomial x 2 − x − 1 .
Such a number is algebraic and can be expressed as the sum of a rational number and the square root of a rational number. Constructible number: A number representing a length that can be constructed using a compass and straightedge. Constructible numbers form a subfield of the field of algebraic numbers, and include the quadratic surds.
If x is an algebraic number then a n x is an algebraic integer, where x satisfies a polynomial p(x) with integer coefficients and where a n x n is the highest-degree term of p(x). The value y = a n x is an algebraic integer because it is a root of q(y) = a n − 1 n p(y /a n), where q(y) is a monic polynomial with integer coefficients.
Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers , finite fields , and function fields .
An algebraic number is any complex number that is a solution to some polynomial equation () = with rational coefficients; for example, every solution of + (/) + = (say) is an algebraic number. Fields of algebraic numbers are also called algebraic number fields, or shortly number fields.
An algebraic number field (or simply number field) is a finite-degree field extension of the field of rational numbers. Here degree means the dimension of the field as a vector space over Q {\displaystyle \mathbb {Q} } .
This is a list of algebraic number theory topics. Basic topics. These topics are basic to the field, either as prototypical examples, or as basic objects of study.
This page was last edited on 29 February 2020, at 14:34 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.