Search results
Results from the WOW.Com Content Network
Lithium bromide was used as a sedative beginning in the early 1900s, but it fell into disfavor in the 1940s as newer sedatives became available and when some heart patients died after using the salt substitute lithium chloride. [11] Like lithium carbonate and lithium chloride, it was used as treatment for bipolar disorder.
Expressing resonance when drawing Lewis structures may be done either by drawing each of the possible resonance forms and placing double-headed arrows between them or by using dashed lines to represent the partial bonds (although the latter is a good representation of the resonance hybrid which is not, formally speaking, a Lewis structure).
The lithium bromide forms a complex with the methyllithium. Most commercially available methyllithium consists of this complex. "Low-halide" methyllithium is prepared from methyl chloride. [1] Lithium chloride precipitates from the diethyl ether since it does not form a strong complex with methyllithium. The filtrate consists of fairly pure ...
Lithium–halogen exchange is a crucial part of Parham cyclization. [15] In this reaction, an aryl halide (usually iodide or bromide) exchanges with organolithium to form a lithiated arene species. If the arene bears a side chain with an electrophillic moiety, the carbanion attached to the lithium will perform intramolecular nucleophilic attack ...
At high temperature and pressure, RbCl adopts the caesium chloride (CsCl) structure (NaCl and KCl undergo the same structural change at high pressures). Here, the chloride ions form a simple cubic arrangement with chloride anions occupying the vertices of a cube surrounding a central Rb +.
Organocopper complexes in particular react sluggishly in the absence of a Lewis acid. Although magnesium bromide generated in situ from the reaction of Grignard reagents and copper(I) halides can serve this role (see above), external Lewis acids are also useful. In the presence of boron trifluoride etherate, organocopper complexes are able to ...
Lithium fluoride is an inorganic compound with the chemical formula LiF. It is a colorless solid that transitions to white with decreasing crystal size. Its structure is analogous to that of sodium chloride, but it is much less soluble in water.
Lithium borohydride (LiBH 4) is a borohydride and known in organic synthesis as a reducing agent for esters. Although less common than the related sodium borohydride , the lithium salt offers some advantages, being a stronger reducing agent and highly soluble in ethers, whilst remaining safer to handle than lithium aluminium hydride .