Search results
Results from the WOW.Com Content Network
For instance, grinding a sample to a higher specific surface area increases its reactivity. In impure compounds, the reactivity is also affected by the inclusion of contaminants. In crystalline compounds, the crystalline form can also affect reactivity. However, in all cases, reactivity is primarily due to the sub-atomic properties of the compound.
The change in reactivity caused by a change of voids inside the reactor is directly proportional to the void coefficient. A positive void coefficient means that the reactivity increases as the void content inside the reactor increases due to increased boiling or loss of coolant; for example, if the coolant acts predominantly as neutron absorber.
Trend-wise, as one moves from left to right across a period in the modern periodic table, the electronegativity increases as the nuclear charge increases and the atomic size decreases. However, if one moves down in a group , the electronegativity decreases as atomic size increases due to the addition of a valence shell , thereby decreasing the ...
The Inhour equation used in nuclear reactor kinetics to relate reactivity and the reactor period. [1] Inhour is short for "inverse hour" and is defined as the reactivity which will make the stable reactor period equal to 1 hour (3,600 seconds). [2] Reactivity is more commonly expressed as per cent millie (pcm) of Δk/k or dollars. [3]
As this happens, the reactivity increases and the control rods must be gradually re-inserted or reactor power will increase. The time constant for this burn-off transient depends on the reactor design, power level history of the reactor for the past several days (therefore the 135 Xe and 135 I concentrations present), and the new power setting.
E ea generally increases across a period (row) in the periodic table prior to reaching group 18. This is caused by the filling of the valence shell of the atom; a group 17 atom releases more energy than a group 1 atom on gaining an electron because it obtains a filled valence shell and therefore is more stable.
The reactivity of a chemical substance is a description of how it might react across a variety of potential chemical systems and, for a given system, how fast such a reaction could proceed. Chemical substances or states can persist indefinitely even though they are not in their lowest energy state if they experience metastability — a state ...
Iron rusting has a low reaction rate. This process is slow. Wood combustion has a high reaction rate. This process is fast. The reaction rate or rate of reaction is the speed at which a chemical reaction takes place, defined as proportional to the increase in the concentration of a product per unit time and to the decrease in the concentration of a reactant per unit time. [1]