Search results
Results from the WOW.Com Content Network
A resonant-tunneling diode (RTD) is a diode with a resonant-tunneling structure in which electrons can tunnel through some resonant states at certain energy levels. The current–voltage characteristic often exhibits negative differential resistance regions.
Tunneling applications include the tunnel diode, [5] quantum computing, flash memory, and the scanning tunneling microscope. Tunneling limits the minimum size of devices used in microelectronics because electrons tunnel readily through insulating layers and transistors that are thinner than about 1 nm.
The resonant-tunneling diode (RTD) has achieved some of the highest frequencies of any solid-state oscillator. [10] Another type of tunnel diode is a metal-insulator-insulator-metal (MIIM) diode, where an additional insulator layer allows "step tunneling" for more precise control of the diode. [11]
Santa Clara, CA and Kyoto, Japan, Jan. 15, 2025 (GLOBE NEWSWIRE) -- ROHM Semiconductor today announced they have started offering samples of the industry’s smallest terahertz (THz) wave oscillation and detection devices utilizing semiconductor elements known as Resonant Tunneling Diodes (RTDs). Terahertz waves are anticipated to be applied to ...
Unlike classical diodes, its current is carried by resonant tunneling through two or more potential barriers (see figure at right). Its negative resistance behavior can only be understood with quantum mechanics: As the confined state moves close to Fermi level, tunnel current increases. As it moves away, the current decreases.
This ensures a smaller series resistance contribution from the total injector transport. The hole injector is composed of GaSb/AlSb quantum wells. It is made just thick enough (typically with just one or two wells) to ensure effective suppression of electron tunneling from the active region to the electron injector of the next stage. The ...
This thin, non-conducting layer may then be modeled by a barrier potential as above. Electrons may then tunnel from one material to the other giving rise to a current. The operation of a scanning tunneling microscope (STM) relies on this tunneling effect. In that case, the barrier is due to the gap between the tip of the STM and the underlying ...
The evanescent wave coupling takes place in the non-radiative field near each medium and as such is always associated with matter; i.e., with the induced currents and charges within a partially reflecting surface. In quantum mechanics the wave function interaction may be discussed in terms of particles and described as quantum tunneling.