enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Approximations of π - Wikipedia

    en.wikipedia.org/wiki/Approximations_of_π

    In the 3rd century BCE, Archimedes proved the sharp inequalities 223 ⁄ 71 < π < 22 ⁄ 7, by means of regular 96-gons (accuracies of 2·10 −4 and 4·10 −4, respectively). [ 15 ] In the 2nd century CE, Ptolemy used the value 377 ⁄ 120 , the first known approximation accurate to three decimal places (accuracy 2·10 −5 ). [ 16 ]

  3. Leibniz formula for π - Wikipedia

    en.wikipedia.org/wiki/Leibniz_formula_for_π

    In mathematics, the Leibniz formula for π, named after Gottfried Wilhelm Leibniz, states that = + + = = +,. an alternating series.. It is sometimes called the Madhava–Leibniz series as it was first discovered by the Indian mathematician Madhava of Sangamagrama or his followers in the 14th–15th century (see Madhava series), [1] and was later independently rediscovered by James Gregory in ...

  4. Hamming code - Wikipedia

    en.wikipedia.org/wiki/Hamming_code

    For example, 1011 is encoded (using the non-systematic form of G at the start of this section) into 01 1 0 011 0 where blue digits are data; red digits are parity bits from the [7,4] Hamming code; and the green digit is the parity bit added by the [8,4] code. The green digit makes the parity of the [7,4] codewords even.

  5. Four fours - Wikipedia

    en.wikipedia.org/wiki/Four_fours

    For example, when d=4, the hash table for two occurrences of d would contain the key-value pair 8 and 4+4, and the one for three occurrences, the key-value pair 2 and (4+4)/4 (strings shown in bold). The task is then reduced to recursively computing these hash tables for increasing n , starting from n=1 and continuing up to e.g. n=4.

  6. Divisibility rule - Wikipedia

    en.wikipedia.org/wiki/Divisibility_rule

    Using the example above: 16,499,205,854,376 has four of the digits 1, 4 and 7 and four of the digits 2, 5 and 8; Since 44 = 0 is a multiple of 3, the number 16,499,205,854,376 is divisible by 3. Subtracting 2 times the last digit from the rest gives a multiple of 3. (Works because 21 is divisible by 3) 405: 40 - 5 x 2 = 40 - 10 = 30 = 3 x 10 4

  7. Quadratic formula - Wikipedia

    en.wikipedia.org/wiki/Quadratic_formula

    Quadratic formula. The roots of the quadratic function y = ⁠ 1 2 ⁠x2 − 3x + ⁠ 5 2 ⁠ are the places where the graph intersects the x -axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.

  8. Repeating decimal - Wikipedia

    en.wikipedia.org/wiki/Repeating_decimal

    For example, in duodecimal, ⁠ 1 / 2 ⁠ = 0.6, ⁠ 1 / 3 ⁠ = 0.4, ⁠ 1 / 4 ⁠ = 0.3 and ⁠ 1 / 6 ⁠ = 0.2 all terminate; ⁠ 1 / 5 ⁠ = 0. 2497 repeats with period length 4, in contrast with the equivalent decimal expansion of 0.2; ⁠ 1 / 7 ⁠ = 0. 186A35 has period 6 in duodecimal, just as it does in decimal. If b is an integer base ...

  9. Binary number - Wikipedia

    en.wikipedia.org/wiki/Binary_number

    Given a decimal number, it can be split into two pieces of about the same size, each of which is converted to binary, whereupon the first converted piece is multiplied by 10 k and added to the second converted piece, where k is the number of decimal digits in the second, least-significant piece before conversion.