enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Primality test - Wikipedia

    en.wikipedia.org/wiki/Primality_test

    This means that, for n up to 2.5 × 10 10, if 2 n −1 (modulo n) equals 1, then n is prime, unless n is one of these 21853 pseudoprimes. Some composite numbers ( Carmichael numbers ) have the property that a n − 1 is 1 (modulo n ) for every a that is coprime to n .

  3. Mersenne prime - Wikipedia

    en.wikipedia.org/wiki/Mersenne_prime

    Proof: 2 p+12 (mod q), so 2 ⁠ 1 / 2 ⁠ (p+1) is a square root of 2 mod q. By quadratic reciprocity, every prime modulus in which the number 2 has a square root is congruent to ±1 (mod 8). A Mersenne prime cannot be a Wieferich prime. Proof: We show if p = 2 m − 1 is a Mersenne prime, then the congruence 2 p−11 (mod p 2) does ...

  4. Prime number - Wikipedia

    en.wikipedia.org/wiki/Prime_number

    A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, 1 × 5 or 5 × 1, involve 5 itself. However, 4 is composite because it is a ...

  5. Fermat primality test - Wikipedia

    en.wikipedia.org/wiki/Fermat_primality_test

    Concept. Fermat's little theorem states that if p is prime and a is not divisible by p, then. If one wants to test whether p is prime, then we can pick random integers a not divisible by p and see whether the congruence holds. If it does not hold for a value of a, then p is composite. This congruence is unlikely to hold for a random a if p is ...

  6. Mersenne conjectures - Wikipedia

    en.wikipedia.org/wiki/Mersenne_conjectures

    p = 2 k ± 1 or p = 4 k ± 3 for some natural number k. (OEIS: A122834) 2 p − 1 is prime (a Mersenne prime). (OEIS: A000043) (2 p + 1)/3 is prime (a Wagstaff prime). (OEIS: A000978) If p is an odd composite number, then 2 p − 1 and (2 p + 1)/3 are both composite. Therefore it is only necessary to test primes to verify the truth of the ...

  7. Euclid's theorem - Wikipedia

    en.wikipedia.org/wiki/Euclid's_theorem

    [2] Consider any finite list of prime numbers p 1, p 2, ..., p n. It will be shown that there exists at least one additional prime number not included in this list. Let P be the product of all the prime numbers in the list: P = p 1 p 2...p n. Let q = P + 1. Then q is either prime or not:

  8. Fundamental theorem of arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    First, 2 is prime. Then, by strong induction, assume this is true for all numbers greater than 1 and less than n. If n is prime, there is nothing more to prove. Otherwise, there are integers a and b, where n = a b, and 1 < a ≤ b < n. By the induction hypothesis, a = p 1 p 2 ⋅⋅⋅ p j and b = q 1 q 2 ⋅⋅⋅ q k are products of primes.

  9. Fermat number - Wikipedia

    en.wikipedia.org/wiki/Fermat_number

    In mathematics, a Fermat number, named after Pierre de Fermat, the first known to have studied them, is a positive integer of the form: where n is a non-negative integer. The first few Fermat numbers are: 3, 5, 17, 257, 65537, 4294967297, 18446744073709551617, ... (sequence A000215 in the OEIS). If 2 k + 1 is prime and k > 0, then k itself must ...