enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Feature engineering - Wikipedia

    en.wikipedia.org/wiki/Feature_engineering

    Feature engineering in machine learning and statistical modeling involves selecting, creating, transforming, and extracting data features. Key components include feature creation from existing data, transforming and imputing missing or invalid features, reducing data dimensionality through methods like Principal Components Analysis (PCA), Independent Component Analysis (ICA), and Linear ...

  3. Feature (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Feature_(machine_learning)

    In feature engineering, two types of features are commonly used: numerical and categorical. Numerical features are continuous values that can be measured on a scale. Examples of numerical features include age, height, weight, and income. Numerical features can be used in machine learning algorithms directly. [citation needed]

  4. Feature selection - Wikipedia

    en.wikipedia.org/wiki/Feature_selection

    Filter feature selection is a specific case of a more general paradigm called structure learning.Feature selection finds the relevant feature set for a specific target variable whereas structure learning finds the relationships between all the variables, usually by expressing these relationships as a graph.

  5. Feature learning - Wikipedia

    en.wikipedia.org/wiki/Feature_learning

    In machine learning (ML), feature learning or representation learning [2] is a set of techniques that allow a system to automatically discover the representations needed for feature detection or classification from raw data. This replaces manual feature engineering and allows a machine to both learn the features and use them to perform a ...

  6. Feature scaling - Wikipedia

    en.wikipedia.org/wiki/Feature_scaling

    Feature standardization makes the values of each feature in the data have zero-mean (when subtracting the mean in the numerator) and unit-variance. This method is widely used for normalization in many machine learning algorithms (e.g., support vector machines , logistic regression , and artificial neural networks ).

  7. Feature-driven development - Wikipedia

    en.wikipedia.org/wiki/Feature-driven_development

    Feature-driven development is built on a core set of software engineering best practices aimed at a client-valued feature perspective. Domain object modelling. Domain object modeling consists of exploring and explaining the domain of the problem to be solved. The resulting domain object model provides an overall framework in which to add features.

  8. Feature model - Wikipedia

    en.wikipedia.org/wiki/Feature_model

    Feature models are visually represented by means of feature diagrams. Feature models are widely used during the whole product line development process and are commonly used as input to produce other assets such as documents, architecture definition, or pieces of code. [citation needed] A SPL is a family of related programs.

  9. Minimum redundancy feature selection - Wikipedia

    en.wikipedia.org/wiki/Minimum_redundancy_feature...

    Features can be selected in many different ways. One scheme is to select features that correlate strongest to the classification variable. This has been called maximum-relevance selection. Many heuristic algorithms can be used, such as the sequential forward, backward, or floating selections.