Search results
Results from the WOW.Com Content Network
Naturally occurring strontium is nonradioactive and nontoxic at levels normally found in the environment, but 90 Sr is a radiation hazard. [4] 90 Sr undergoes β − decay with a half-life of 28.79 years and a decay energy of 0.546 MeV distributed to an electron, an antineutrino, and the yttrium isotope 90 Y, which in turn undergoes β − decay with a half-life of 64 hours and a decay energy ...
The longest-lived of these isotopes, and the most relevantly studied, are 90 Sr with a half-life of 28.9 years, 85 Sr with a half-life of 64.853 days, and 89 Sr (89 Sr) with a half-life of 50.57 days. All other strontium isotopes have half-lives shorter than 50 days, most under 100 minutes.
strontium-90: 28.79 909 curium-243: 29.1 920 caesium-137: 30.17 952 10 9 seconds (gigaseconds) isotope half-life years 10 9 seconds bismuth-207: 32.9 1.04 titanium-44: 63
The only stable nuclides having an odd number of protons and an odd number of neutrons are hydrogen-2, lithium-6, boron-10, nitrogen-14 and (observationally) tantalum-180m. This is because the mass–energy of such atoms is usually higher than that of their neighbors on the same isobaric chain, so most of them are unstable to beta decay .
Niobium-95, with a half-life of 35 days, is initially present as a fission product. The only stable isotope of niobium has mass number 93, and fission products of mass 93 first decay to long-lived zirconium-93 (half-life 1.53 Ma). Niobium-95 will decay to molybdenum-95 which is stable.
The mean strontium content of ocean water is 8 mg/L. [50] [51] At a concentration between 82 and 90 μmol/L of strontium, the concentration is considerably lower than the calcium concentration, which is normally between 9.6 and 11.6 mmol/L. [52] [53] It is nevertheless much higher than that of barium, 13 μg/L. [11]
Source of most of the decay heat from years to decades after irradiation, together with 90 Sr. 6.0507%: Technetium: 99 Tc: 211 ky: Candidate for disposal by nuclear transmutation. 5.7518%: Strontium: 90 Sr: 28.9 y: Source of much of the decay heat together with 137 Cs on the timespan of years to decades after irradiation.
Since the nuclei that can readily undergo fission are particularly neutron-rich (e.g. 61% of the nucleons in uranium-235 are neutrons), the initial fission products are often more neutron-rich than stable nuclei of the same mass as the fission product (e.g. stable zirconium-90 is 56% neutrons compared to unstable strontium-90 at 58%).