Search results
Results from the WOW.Com Content Network
Each thermal profile is ranked on how it fits in a process window (the specification or tolerance limit). [6] Raw temperature values are normalized in terms of a percentage relative to both the process mean and the window limits. The center of the process window is defined as zero, and the extreme edges of the process window are ±99%. [6]
For example, if a shaft with a nominal diameter of 10 mm is to have a sliding fit within a hole, the shaft might be specified with a tolerance range from 9.964 to 10 mm (i.e., a zero fundamental deviation, but a lower deviation of 0.036 mm) and the hole might be specified with a tolerance range from 10.04 mm to 10.076 mm (0.04 mm fundamental ...
Tolerance analysis is the general term for activities related to the study of accumulated variation in mechanical parts and assemblies. Its methods may be used on other types of systems subject to accumulated variation, such as mechanical and electrical systems.
Example of true position geometric control defined by basic dimensions and datum features. Geometric dimensioning and tolerancing (GD&T) is a system for defining and communicating engineering tolerances via a symbolic language on engineering drawings and computer-generated 3D models that describes a physical object's nominal geometry and the permissible variation thereof.
The total intensity or base peak intensity within a mass tolerance window around a particular analyte's mass-to-charge ratio is plotted at every point in the analysis. The size of the mass tolerance window typically depends on the mass accuracy and mass resolution of the instrument collecting the data. This is useful for re-examining data to ...
In mechanical engineering, limits and fits are a set of rules regarding the dimensions and tolerances of mating machined parts if they are to achieve the desired ease of assembly, and security after assembly - sliding fit, interference fit, rotating fit, non-sliding fit, loose fit, etc.
Engineering fits are generally used as part of geometric dimensioning and tolerancing when a part or assembly is designed. In engineering terms, the "fit" is the clearance between two mating parts, and the size of this clearance determines whether the parts can, at one end of the spectrum, move or rotate independently from each other or, at the other end, are temporarily or permanently joined.
In graph theory, a tolerance graph is an undirected graph in which every vertex can be represented by a closed interval and a real number called its tolerance, in such a way that two vertices are adjacent in the graph whenever their intervals overlap in a length that is at least the minimum of their two tolerances. [1]