enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Symmetry in biology - Wikipedia

    en.wikipedia.org/wiki/Symmetry_in_biology

    The animal group with the most obvious biradial symmetry is the ctenophores. In ctenophores the two planes of symmetry are (1) the plane of the tentacles and (2) the plane of the pharynx. [1] In addition to this group, evidence for biradial symmetry has even been found in the 'perfectly radial' freshwater polyp Hydra (a cnidarian). Biradial ...

  3. Cyclic symmetry in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Cyclic_symmetry_in_three...

    It has reflection symmetry with respect to a plane perpendicular to the n-fold rotation axis. C nv, [n], (*nn) of order 2n - pyramidal symmetry or full acro-n-gonal group (abstract group Dih n); in biology C 2v is called biradial symmetry. For n=1 we have again C s (1*). It has vertical mirror planes. This is the symmetry group for a regular n ...

  4. Point groups in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Point_groups_in_three...

    The conjugacy definition would also allow a mirror image of the structure, but this is not needed, the structure itself is achiral. For example, if a symmetry group contains a 3-fold axis of rotation, it contains rotations in two opposite directions. (The structure is chiral for 11 pairs of space groups with a screw axis.)

  5. Symmetry (geometry) - Wikipedia

    en.wikipedia.org/wiki/Symmetry_(geometry)

    A wider definition of geometric symmetry allows operations from a larger group than the Euclidean group of isometries. Examples of larger geometric symmetry groups are: The group of similarity transformations; [30] i.e., affine transformations represented by a matrix A that is a scalar times an orthogonal matrix.

  6. Birational geometry - Wikipedia

    en.wikipedia.org/wiki/Birational_geometry

    In mathematics, birational geometry is a field of algebraic geometry in which the goal is to determine when two algebraic varieties are isomorphic outside lower-dimensional subsets. This amounts to studying mappings that are given by rational functions rather than polynomials ; the map may fail to be defined where the rational functions have poles.

  7. Symmetry - Wikipedia

    en.wikipedia.org/wiki/Symmetry

    Symmetry in physics has been generalized to mean invariance—that is, lack of change—under any kind of transformation, for example arbitrary coordinate transformations. [17] This concept has become one of the most powerful tools of theoretical physics, as it has become evident that practically all laws of nature originate in symmetries.

  8. Symmetry in mathematics - Wikipedia

    en.wikipedia.org/wiki/Symmetry_in_mathematics

    Symmetry occurs not only in geometry, but also in other branches of mathematics. Symmetry is a type of invariance: the property that a mathematical object remains unchanged under a set of operations or transformations. [1] Given a structured object X of any sort, a symmetry is a mapping of the object onto itself which preserves the structure.

  9. Floral symmetry - Wikipedia

    en.wikipedia.org/wiki/Floral_symmetry

    Examples are orchids and the flowers of most members of the Lamiales (e.g., Scrophulariaceae and Gesneriaceae). Some authors prefer the term monosymmetry or bilateral symmetry. [1] The asymmetry allows pollen to be deposited in specific locations on pollinating insects and this specificity can result in evolution of new species. [2]