Search results
Results from the WOW.Com Content Network
In cryptography, SHA-1 (Secure Hash Algorithm 1) is a hash function which takes an input and produces a 160-bit (20-byte) hash value known as a message digest – typically rendered as 40 hexadecimal digits. It was designed by the United States National Security Agency, and is a U.S. Federal Information Processing Standard. [3]
Collisions against the full SHA-1 algorithm can be produced using the shattered attack and the hash function should be considered broken. SHA-1 produces a hash digest of 160 bits (20 bytes). Documents may refer to SHA-1 as just "SHA", even though this may conflict with the other Secure Hash Algorithms such as SHA-0, SHA-2, and SHA-3.
SHA-1: A 160-bit hash function which resembles the earlier MD5 algorithm. This was designed by the National Security Agency (NSA) to be part of the Digital Signature Algorithm . Cryptographic weaknesses were discovered in SHA-1, and the standard was no longer approved for most cryptographic uses after 2010.
Nodes and keys are assigned an -bit identifier using consistent hashing.The SHA-1 algorithm is the base hashing function for consistent hashing. Consistent hashing is integral to the robustness and performance of Chord because both keys and nodes (in fact, their IP addresses) are uniformly distributed in the same identifier space with a negligible possibility of collision.
To index a file with given filename and data in the DHT, the SHA-1 hash of filename is generated, producing a 160-bit key k, and a message put(k, data) is sent to any node participating in the DHT. The message is forwarded from node to node through the overlay network until it reaches the single node responsible for key k as specified by the ...
In cryptography, the avalanche effect is the desirable property of cryptographic algorithms, typically block ciphers [1] and cryptographic hash functions, wherein if an input is changed slightly (for example, flipping a single bit), the output changes significantly (e.g., half the output bits flip).
SHACAL-1 turns the SHA-1 compression function into a block cipher by using the state input as the data block and using the data input as the key input. In other words, SHACAL-1 views the SHA-1 compression function as an 80-round, 160-bit block cipher with a 512-bit key. Keys shorter than 512 bits are supported by padding them with zeros.
The sponge construction for hash functions. P i are blocks of the input string, Z i are hashed output blocks.. In cryptography, a sponge function or sponge construction is any of a class of algorithms with finite internal state that take an input bit stream of any length and produce an output bit stream of any desired length.