enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Matrix norm - Wikipedia

    en.wikipedia.org/wiki/Matrix_norm

    The Frobenius norm is an extension of the Euclidean norm to and comes from the Frobenius inner product on the space of all matrices. The Frobenius norm is sub-multiplicative and is very useful for numerical linear algebra. The sub-multiplicativity of Frobenius norm can be proved using Cauchy–Schwarz inequality.

  3. Perron–Frobenius theorem - Wikipedia

    en.wikipedia.org/wiki/Perron–Frobenius_theorem

    Let = be an positive matrix: > for ,.Then the following statements hold. There is a positive real number r, called the Perron root or the Perron–Frobenius eigenvalue (also called the leading eigenvalue, principal eigenvalue or dominant eigenvalue), such that r is an eigenvalue of A and any other eigenvalue λ (possibly complex) in absolute value is strictly smaller than r, |λ| < r.

  4. Schatten norm - Wikipedia

    en.wikipedia.org/wiki/Schatten_norm

    The Schatten 2-norm is the Frobenius norm. ... The latter version of Hölder's inequality is proven in higher ... Theory of Quantum Information, 2.3 Norms of ...

  5. Golden–Thompson inequality - Wikipedia

    en.wikipedia.org/wiki/Golden–Thompson_inequality

    The standard Golden–Thompson inequality is a special case of the above inequality, where the norm is the Frobenius norm. The general case is provable in the same way, since unitarily invariant norms also satisfy the Cauchy-Schwarz inequality. (Bhatia 1997, Exercise IV.2.7)

  6. Frobenius method - Wikipedia

    en.wikipedia.org/wiki/Frobenius_method

    A first contribution by Frobenius to the theory was to show that - as regards a first, linearly independent solution, which then has the form of an analytical power series multiplied by an arbitrary power r of the independent variable (see below) - the coefficients of the generalized power series obey a recurrence relation, so that they can ...

  7. Schur decomposition - Wikipedia

    en.wikipedia.org/wiki/Schur_decomposition

    The nilpotent part N is generally not unique either, but its Frobenius norm is uniquely determined by A (just because the Frobenius norm of A is equal to the Frobenius norm of U = D + N). [6] It is clear that if A is a normal matrix, then U from its Schur decomposition must be a diagonal matrix and the column vectors of Q are the eigenvectors of A.

  8. Frobenius theorem (differential topology) - Wikipedia

    en.wikipedia.org/wiki/Frobenius_theorem...

    Frobenius' theorem is one of the basic tools for the study of vector fields and foliations. There are thus two forms of the theorem: one which operates with distributions , that is smooth subbundles D of the tangent bundle TM ; and the other which operates with subbundles of the graded ring Ω( M ) of all forms on M .

  9. Matrix regularization - Wikipedia

    en.wikipedia.org/wiki/Matrix_regularization

    One example is the squared Frobenius norm, which can be viewed as an -norm acting either entrywise, or on the singular values of the matrix: = ‖ ‖ = | | = ⁡ =. In the multivariate case the effect of regularizing with the Frobenius norm is the same as the vector case; very complex models will have larger norms, and, thus, will be penalized ...