Search results
Results from the WOW.Com Content Network
The Frobenius norm is an extension of the Euclidean norm to and comes from the Frobenius inner product on the space of all matrices. The Frobenius norm is sub-multiplicative and is very useful for numerical linear algebra. The sub-multiplicativity of Frobenius norm can be proved using Cauchy–Schwarz inequality.
On the other hand, this makes the Frobenius normal form rather different from other normal forms that do depend on factoring the characteristic polynomial, notably the diagonal form (if A is diagonalizable) or more generally the Jordan normal form (if the characteristic polynomial splits into linear factors). For instance, the Frobenius normal ...
Download as PDF; Printable version; ... (or Frobenius norm) ... Another type of NMF for images is based on the total variation norm. [22]
where ‖ ‖ denotes the Frobenius norm. This is a special case of Wahba's problem (with identical weights; instead of considering two matrices, in Wahba's problem the columns of the matrices are considered as individual vectors). Another difference is that Wahba's problem tries to find a proper rotation matrix instead of just an orthogonal one.
Hadamard product (matrices) Hilbert–Schmidt inner product; Kronecker product; Matrix analysis; Matrix multiplication; Matrix norm; Tensor product of Hilbert spaces – the Frobenius inner product is the special case where the vector spaces are finite-dimensional real or complex vector spaces with the usual Euclidean inner product
A Frobenius matrix is a special kind of square matrix from numerical analysis. A matrix is a Frobenius matrix if it has the following three properties: all entries on the main diagonal are ones; the entries below the main diagonal of at most one column are arbitrary; every other entry is zero; The following matrix is an example.
The nilpotent part N is generally not unique either, but its Frobenius norm is uniquely determined by A (just because the Frobenius norm of A is equal to the Frobenius norm of U = D + N). [6] It is clear that if A is a normal matrix, then U from its Schur decomposition must be a diagonal matrix and the column vectors of Q are the eigenvectors of A.
In mathematics, particularly in linear algebra and applications, matrix analysis is the study of matrices and their algebraic properties. [1] Some particular topics out of many include; operations defined on matrices (such as matrix addition, matrix multiplication and operations derived from these), functions of matrices (such as matrix exponentiation and matrix logarithm, and even sines and ...