Search results
Results from the WOW.Com Content Network
SIUI develops and manufactures a variety of ultrasound imaging systems and accessories for both human and veterinary use, and NDT equipment including phased-array ultrasonic flaw detector, [3] conventional flaw detector, [4] thickness gauge, probes [5] and accessories. The company is currently organized into three product category divisions ...
Eddy Current Testing at Level 2, International Atomic Energy Agency, Vienna, 2011 (pdf 5.6 MB). ASTM E3052 Standard Practice for Examination of Carbon Steel Welds Using Eddy Current Array Official web page of Lorentz Force Velocimetry and Lorentz Force Eddy Current Testing Group Archived 2013-11-17 at the Wayback Machine
The first efforts to use ultrasonic testing to detect flaws in solid material occurred in the 1930s. [1] On May 27, 1940, U.S. researcher Dr. Floyd Firestone of the University of Michigan applies for a U.S. invention patent for the first practical ultrasonic testing method.
Weld examination by phased array. TOP: The phased array probe emits a series of beams to flood the weld with sound. BOTTOM: The flaw in the weld appears as a red indication on the instrument screen. Phased array ultrasonics (PA) is an advanced method of ultrasonic testing that has applications in medical imaging and industrial nondestructive ...
Modern-day inspection cars now use multiple NDT methods. Induction and ultrasound methods can be used in rail inspection cars and operate at testing speeds of more than 30 mph (48 km/h). Increased Camera systems for detection of broken joint bars or missing bolts. Eddy Current systems for the detection of near-surface defects.
Most often, the detector is a spectrophotometer as the reactions usually produce a colored product. One can then determine the amount of an unknown material in the sample as it is proportional to the absorption spectrum given by the spectrophotometer. After moving through the detector, the sample then flows to waste. Detail of sample dispersion
Liquid penetrant inspection of non-magnetic aircraft metal parts. Fluorescent penetrant inspection (FPI) is a type of dye penetrant inspection in which a fluorescent dye is applied to the surface of a non-porous material in order to detect defects that may compromise the integrity or quality of the part in question.
Making a radiograph. Industrial radiography is a modality of non-destructive testing that uses ionizing radiation to inspect materials and components with the objective of locating and quantifying defects and degradation in material properties that would lead to the failure of engineering structures.