Search results
Results from the WOW.Com Content Network
For example, the velocity of a Lamb-like wave in a thin cylinder will depend slightly on the radius of the cylinder and on whether the wave is traveling along the axis or round the circumference. Another question is what completely different acoustical behaviors and wave modes may be present in the real geometry of the part.
Like light waves, inertial waves are transverse, which means that their vibrations occur perpendicular to the direction of wave travel. One peculiar geometrical characteristic of inertial waves is that their phase velocity , which describes the movement of the crests and troughs of the wave, is perpendicular to their group velocity , which is a ...
Rayleigh waves are distinct from other types of surface or guided acoustic waves such as Love waves or Lamb waves, both being types of guided waves supported by a layer, or longitudinal and shear waves, that travel in the bulk. Rayleigh waves have a speed slightly less than shear waves by a factor dependent on the elastic constants of the ...
The Lamb shift is caused by interactions between the virtual photons created through vacuum energy fluctuations and the electron as it moves around the hydrogen nucleus in each of these two orbitals. The Lamb shift has since played a significant role through vacuum energy fluctuations in theoretical prediction of Hawking radiation from black holes.
It is for this reason that internal waves move in slow-motion relative to surface waves. Whereas the reduced gravity is the key variable describing buoyancy for interfacial internal waves, a different quantity is used to describe buoyancy in continuously stratified fluid whose density varies with height as ρ 0 ( z ) {\displaystyle \rho _{0}(z)} .
Ed Jaynes proposed an alternate model where the Lamb-like shift is due instead to the interaction with other particles very much along the same notions of the Wheeler–Feynman absorber theory itself. One simple model is to calculate the motion of an oscillator coupled directly with many other oscillators.
D'Alembert's principle, also known as the Lagrange–d'Alembert principle, is a statement of the fundamental classical laws of motion. It is named after its discoverer, the French physicist and mathematician Jean le Rond d'Alembert , and Italian-French mathematician Joseph Louis Lagrange .
Much like the familiar oceanic waves, waves described by the Euler Equations 'break' and so-called shock waves are formed; this is a nonlinear effect and represents the solution becoming multi-valued. Physically this represents a breakdown of the assumptions that led to the formulation of the differential equations, and to extract further ...