Search results
Results from the WOW.Com Content Network
Similarly, both dual-specificity MAP kinase phosphatases and MAP-specific tyrosine phosphatases bind to MAP kinases through the same docking site. [34] [35] D-motifs can even be found in certain MAPK pathway regulators and scaffolds (e.g. in the mammalian JIP proteins). [citation needed] Other, less well characterised substrate-binding sites ...
When one of the proteins in the pathway is mutated, it can become stuck in the "on" or "off" position, a necessary step in the development of many cancers. In fact, components of the MAPK/ERK pathway were first discovered in cancer cells, and drugs that reverse the "on" or "off" switch are being investigated as cancer treatments. [1]
Oxidative stress is the most powerfully specific stress activating p38 MAPK. [7] Abnormal activity (higher or lower than physiological) of p38 has been implicated in pathological stresses in several tissues, that include neuronal, [8] [9] [10] bone, [11] lung, [12] cardiac and skeletal muscle, [13] [14] red blood cells, [15] and fetal tissues. [16]
The protein encoded by this gene is a member of the mitogen-activated protein kinase (MAP kinase) family. MAP kinases, also known as extracellular signal-regulated kinases (ERKs), act in a signaling cascade that regulates various cellular processes such as proliferation, differentiation, and cell cycle progression in response to a variety of extracellular signals.
ERK3/MAPK6 is widely expressed protein however it is expressed in significantly higher amounts in skeletal muscles and brain. It is localized in cytoplasm and the nucleus of cells. ERK3/MAPK6 is a highly unstable protein and has a very little half life of less than an hour. It is degraded by ubiquitin mediated proteasomal pathway. [8]
To date, MAP4K4 has been found to be expressed in all tissue types [11] with a relatively more pronounced expression in the brain and testes. [14] Multiple isoforms of MAP4K4 can be present at any given time in the same cell but the abundance of each isoform in the cell differs depending on the cell-type or tissue-type. [14] E.g.
Trk receptors affect neuronal growth and differentiation through the activation of different signaling cascades. The three known pathways are PLC, Ras/MAPK (mitogen-activated protein kinase) and the PI3K (phosphatidylinositol 3-kinase) pathways. [3] These pathways involve the interception of nuclear and mitochondrial cell-death programs. [3]
Mitogen-activated protein kinase kinase (also known as MAP2K, MEK, MAPKK) is a dual-specificity kinase enzyme which phosphorylates mitogen-activated protein kinase (MAPK). MAP2K is classified as EC 2.7.12.2 .