Search results
Results from the WOW.Com Content Network
If this is the case, then the load banks used for testing require reactive power compensation. The ideal solution is a combination of both resistive and reactive elements in one load bank package. Resistive/reactive loads are able to mimic motor loads and electromagnetic devices within a power system, as well as provide purely resistive loads.
For example, in order to match an inductive load into a real impedance, a capacitor needs to be used. If the load impedance becomes capacitive, the matching element must be replaced by an inductor. In many cases, there is a need to use the same circuit to match a broad range of load impedance and thus simplify the circuit design.
Since the reactive power does not travel over the wires as well as the real power, [19] there is an incentive to concentrate its production close to the load. Restructuring of electric power systems takes this area of the power grid out of hands of the integrated power utility , so the trend is to push the problem onto the customer and require ...
A refinement of the maximum power theorem says that any reactive components of source and load should be of equal magnitude but opposite sign. (See below for a derivation.) This means that the source and load impedances should be complex conjugates of each other. In the case of purely resistive circuits, the two concepts are identical.
[1]: 3 The portion of instantaneous power that results in no net transfer of energy but instead oscillates between the source and load in each cycle due to stored energy is known as instantaneous reactive power, and its amplitude is the absolute value of reactive power.
With a purely resistive load, they are the same: the apparent power is equal to the real power. Where a reactive (capacitive or inductive) component is present in the load, the apparent power is greater than the real power as voltage and current are no longer in phase.
They simply absorb the reactive power (like any typical induction machine), so a switched capacitor bank is usually used to correct the power factor to unity. [7] Capability curve of a photovoltaic generator. Older PV generators were intended for distribution networks. Since the current state of these networks does not include the voltage ...
Angle notation can easily describe leading and lagging current: . [1] In this equation, the value of theta is the important factor for leading and lagging current. As mentioned in the introduction above, leading or lagging current represents a time shift between the current and voltage sine curves, which is represented by the angle by which the curve is ahead or behind of where it would be ...