Ad
related to: root test examples math definition geometry
Search results
Results from the WOW.Com Content Network
In mathematics, the root test is a criterion for the convergence (a convergence test) of an infinite series.It depends on the quantity | |, where are the terms of the series, and states that the series converges absolutely if this quantity is less than one, but diverges if it is greater than one.
In mathematics, Descartes' rule of signs, described by René Descartes in his La Géométrie, counts the roots of a polynomial by examining sign changes in its coefficients. The number of positive real roots is at most the number of sign changes in the sequence of polynomial's coefficients (omitting zero coefficients), and the difference ...
In mathematics, a degenerate case is a limiting case of a class of objects which appears to be qualitatively different from (and usually simpler than) the rest of the class; [1] "degeneracy" is the condition of being a degenerate case. [2] The definitions of many classes of composite or structured objects often implicitly include inequalities.
In the 19th century, the internal development of geometry (pure mathematics) led to definition and study of non-Euclidean geometries, spaces of dimension higher than three and manifolds. At this time, these concepts seemed totally disconnected from the physical reality, but at the beginning of the 20th century, Albert Einstein developed the ...
The rational root test allows finding q and p by examining a finite number of cases (because q must be a divisor of a, and p must be a divisor of d). Thus, one root is =, and the other roots are the roots of the other factor, which can be found by polynomial long division.
If the rational root test finds no rational solutions, then the only way to express the solutions algebraically uses cube roots. But if the test finds a rational solution r, then factoring out (x – r) leaves a quadratic polynomial whose two roots, found with the quadratic formula, are the remaining two roots of the cubic, avoiding cube roots.
A root is a simple root if = or a multiple root if . Simple roots are Lipschitz continuous with respect to coefficients but multiple roots are not. In other words, simple roots have bounded sensitivities but multiple roots are infinitely sensitive if the coefficients are perturbed arbitrarily.
For example, the sequence 2, 6, 18, 54, ... is a geometric progression with a common ratio of 3. Similarly 10, 5, 2.5, 1.25, ... is a geometric sequence with a common ratio of 1/2. Examples of a geometric sequence are powers r k of a fixed non-zero number r, such as 2 k and 3 k. The general form of a geometric sequence is
Ad
related to: root test examples math definition geometry