Search results
Results from the WOW.Com Content Network
Thermal or compositional fluid-dynamical plumes produced in that way were presented as models for the much larger postulated mantle plumes. Based on these experiments, mantle plumes are now postulated to comprise two parts: a long thin conduit connecting the top of the plume to its base, and a bulbous head that expands in size as the plume rises.
The formation and development of plumes in the early mantle contributed to triggering the lateral movement of crust across the Earth's surface. [18] The effect of upwelling mantle plumes on the lithosphere can be seen today through local depressions around hotspots such as Hawaii. The scale of this impact is much less than that exhibited in the ...
Mantle plumes were first proposed by J. Tuzo Wilson in 1963 [4] [non-primary source needed] and further developed by W. Jason Morgan in 1971. A mantle plume is posited to exist where hot rock nucleates [clarification needed] at the core-mantle boundary and rises through the Earth's mantle becoming a diapir in the Earth's crust. [5]
Mantle convection is the very slow creep of Earth's solid silicate mantle as convection currents carry heat from the interior to the planet's surface. [2] [3] Mantle convection causes tectonic plates to move around the Earth's surface. [4] The Earth's lithosphere rides atop the asthenosphere, and the two form the components of the upper mantle ...
Scientists believe they’ve discovered an ancient ocean floor comprising a new layer between Earth’s mantle and core. Scientists believe they’ve discovered an ancient ocean floor comprising a ...
The resulting motion forms small clusters of small plumes right above the core-mantle boundary that combine to form larger plumes and then contribute to superplumes. The Pacific and African LLSVP, in this scenario, are originally created by a discharge of heat from the core (4000 K) to the much colder mantle (2000 K); the recycled lithosphere ...
The oceanic crust displays a pattern of magnetic lines, parallel to the ocean ridges, frozen in the basalt. A symmetrical pattern of positive and negative magnetic lines emanates from the mid-ocean ridge. [24] New rock is formed by magma at the mid-ocean ridges, and the ocean floor spreads out from this point.
Scientists using an ocean drilling vessel have dug the deepest hole ever in rock from Earth's mantle - penetrating 4,160 feet (1,268 meters) below the Atlantic seabed - and obtained a large sample ...