Search results
Results from the WOW.Com Content Network
In coordination chemistry, a coordinate covalent bond, [1] also known as a dative bond, [2] dipolar bond, [1] or coordinate bond [3] is a kind of two-center, two-electron covalent bond in which the two electrons derive from the same atom. The bonding of metal ions to ligands involves this kind of interaction. [4]
Hydrates are ionic compounds that have absorbed water. They are named as the ionic compound followed by a numerical prefix and -hydrate. The numerical prefixes used are listed below (see IUPAC numerical multiplier): mono-di-tri-tetra-penta-hexa-hepta-octa-nona-deca-For example, CuSO 4 ·5H 2 O is "copper(II) sulfate pentahydrate".
[1] [2] [3] Introduced by Gilbert N. Lewis in his 1916 article The Atom and the Molecule, a Lewis structure can be drawn for any covalently bonded molecule, as well as coordination compounds. [4] Lewis structures extend the concept of the electron dot diagram by adding lines between atoms to represent shared pairs in a chemical bond.
Stoichiometric names are the simplest and reflect either the empirical formula or the molecular formula. The ordering of the elements follows the formal electronegativity list for binary compounds and electronegativity list to group the elements into two classes which are then alphabetically sequenced. The proportions are specified by di-, tri ...
The most common coordination number for d-block transition metal complexes is 6. The coordination number does not distinguish the geometry of such complexes, i.e. octahedral vs trigonal prismatic. For transition metal complexes, coordination numbers range from 2 (e.g., Au I in Ph 3 PAuCl) to 9 (e.g., Re VII in [ReH 9] 2−).
Other common coordination geometries are tetrahedral and square planar. Crystal field theory may be used to explain the relative stabilities of transition metal compounds of different coordination geometry, as well as the presence or absence of paramagnetism, whereas VSEPR may be used for complexes of main group element to predict geometry.
The hexahalides adopt octahedral coordination geometry, whereas the tetrahalides are usually tetrahedral. Square planar tetrahalides are known for Pd(II), Pt(II), and Au(III). Examples with 2- and 3-coordination are common for Au(I), Cu(I), and Ag(I).
Organometallic compounds (50 C, 22 P) Oxalato complexes (8 P) P. ... Pages in category "Coordination complexes" The following 99 pages are in this category, out of 99 ...