Search results
Results from the WOW.Com Content Network
Since C = 2πr, the circumference of a unit circle is 2π. In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. [1] Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Euclidean plane.
Arcs with an angular magnitude on a circle generate a measure on certain measurable sets on the circle whose magnitude does not vary as the circle turns or rotates. For the hyperbola the turning is by squeeze mapping, and the hyperbolic angle magnitudes stay the same when the plane is squeezed by a mapping (x, y) ↦ (rx, y / r), with r > 0 .
The area of a hyperbolic triangle is given by its defect in radians multiplied by R 2, which is also true for all convex hyperbolic polygons. [2] Therefore all hyperbolic triangles have an area less than or equal to R 2 π. The area of a hyperbolic ideal triangle in which all three angles are 0° is equal to this maximum.
When radians (rad) are employed, the angle is given as the length of the arc of the unit circle subtended by it: the angle that subtends an arc of length 1 on the unit circle is 1 rad (≈ 57.3°), and a complete turn (360°) is an angle of 2 π (≈ 6.28) rad.
Giving the area of a segment of a unit sphere in steradians is analogous to giving the length of an arc of a unit circle in radians. Just as the magnitude of a plane angle in radians at the vertex of a circular sector is the ratio of the length of its arc to its radius, the magnitude of a solid angle in steradians is the ratio of the area ...
A related question is whether it can be expressed using cube roots. The following two approaches can be used, but both result in an expression that involves the cube root of a complex number . Using the triple-angle identity, we can identify sin ( 1 ∘ ) {\displaystyle \sin(1^{\circ })} as a root of a cubic polynomial: sin ( 3 ∘ ...
English: Some common angles (multiples of 30 and 45 degrees) and the corresponding sine and cosine values shown on the Unit circle. The angles (θ) are given in degrees and radians, together with the corresponding intersection point on the unit circle, (cos θ, sin θ).
A page from Archimedes' Measurement of a Circle. Measurement of a Circle or Dimension of the Circle (Greek: Κύκλου μέτρησις, Kuklou metrēsis) [1] is a treatise that consists of three propositions, probably made by Archimedes, ca. 250 BCE. [2] [3] The treatise is only a fraction of what was a longer work. [4] [5]