Search results
Results from the WOW.Com Content Network
The cooling mantle model, which was developed after the plate model, does not require that the lithosphere base is maintained at a constant and limiting temperature. The result of the cooling mantle model is that seafloor depth is predicted to be proportional to the square root of its age.
The Vine–Matthews–Morley hypothesis, also known as the Morley–Vine–Matthews hypothesis, was the first key scientific test of the seafloor spreading theory of continental drift and plate tectonics. Its key impact was that it allowed the rates of plate motions at mid-ocean ridges to be computed.
Depth is better explained by a cooling lithosphere plate model rather than the cooling mantle half-space. [27] The plate has a constant temperature at its base and spreading edge. Analysis of depth versus age and depth versus square root of age data allowed Parsons and Sclater [27] to estimate model parameters (for the North Pacific):
Plate motion based on Global Positioning System (GPS) satellite data from NASA JPL. Each red dot is a measuring point and vectors show direction and magnitude of motion. Tectonic plates are able to move because of the relative density of oceanic lithosphere and the relative weakness of the asthenosphere.
The lithosphere is divided into tectonic plates that are continuously being created or consumed at plate boundaries. Accretion occurs as mantle is added to the growing edges of a plate, associated with seafloor spreading. Upwelling beneath the spreading centers is a shallow, rising component of mantle convection and in most cases not directly ...
Plate tectonics was a suitable explanation for seafloor spreading, and the acceptance of plate tectonics by the majority of geologists resulted in a major paradigm shift in geological thinking. It is estimated that along Earth's mid-ocean ridges every year 2.7 km 2 (1.0 sq mi) of new seafloor is formed by this process. [50]
The seabed (also known as the seafloor, sea floor, ocean floor, and ocean bottom) is the bottom of the ocean. All floors of the ocean are known as 'seabeds'. The structure of the seabed of the global ocean is governed by plate tectonics. Most of the ocean is very deep, where the seabed is known as the abyssal plain. Seafloor spreading creates ...
Oceanic trench – Long and narrow depressions of the sea floor; Paleoclimatology – Study of changes in ancient climate; Paleomap – Map of continents and mountain ranges in the past based on plate reconstructions; Seamount – Mountain rising from the ocean seafloor that does not reach to the water's surface