enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Partition function (number theory) - Wikipedia

    en.wikipedia.org/wiki/Partition_function_(number...

    The function q(n) gives the number of these strict partitions of the given sum n. For example, q(3) = 2 because the partitions 3 and 1 + 2 are strict, while the third partition 1 + 1 + 1 of 3 has repeated parts. The number q(n) is also equal to the number of partitions of n in which only odd summands are permitted. [20]

  3. Integer partition - Wikipedia

    en.wikipedia.org/wiki/Integer_partition

    Such a partition is called a partition with distinct parts. If we count the partitions of 8 with distinct parts, we also obtain 6: 8; 7 + 1; 6 + 2; 5 + 3; 5 + 2 + 1; 4 + 3 + 1; This is a general property. For each positive number, the number of partitions with odd parts equals the number of partitions with distinct parts, denoted by q(n).

  4. Triangle of partition numbers - Wikipedia

    en.wikipedia.org/wiki/Triangle_of_partition_numbers

    Their numbers can be arranged into a triangle, the triangle of partition numbers, in which the th row gives the partition numbers () , (), …, (): [1] k. n 1 ...

  5. Quotition and partition - Wikipedia

    en.wikipedia.org/wiki/Quotition_and_partition

    If there is a remainder in solving a partition problem, the parts will end up with unequal sizes. For example, if 52 cards are dealt out to 5 players, then 3 of the players will receive 10 cards each, and 2 of the players will receive 11 cards each, since 52 5 = 10 + 2 5 {\textstyle {\frac {52}{5}}=10+{\frac {2}{5}}} .

  6. Bell triangle - Wikipedia

    en.wikipedia.org/wiki/Bell_triangle

    In mathematics, the Bell triangle is a triangle of numbers analogous to Pascal's triangle, whose values count partitions of a set in which a given element is the largest singleton. It is named for its close connection to the Bell numbers , [ 1 ] which may be found on both sides of the triangle, and which are in turn named after Eric Temple Bell .

  7. Multiway number partitioning - Wikipedia

    en.wikipedia.org/wiki/Multiway_number_partitioning

    The partition problem - a special case of multiway number partitioning in which the number of subsets is 2. The 3-partition problem - a different and harder problem, in which the number of subsets is not considered a fixed parameter, but is determined by the input (the number of sets is the number of integers divided by 3).

  8. Partition problem - Wikipedia

    en.wikipedia.org/wiki/Partition_problem

    In number theory and computer science, the partition problem, or number partitioning, [1] is the task of deciding whether a given multiset S of positive integers can be partitioned into two subsets S 1 and S 2 such that the sum of the numbers in S 1 equals the sum of the numbers in S 2.

  9. Bell number - Wikipedia

    en.wikipedia.org/wiki/Bell_number

    The Stirling number {} is the number of ways to partition a set of cardinality n into exactly k nonempty subsets. Thus, in the equation relating the Bell numbers to the Stirling numbers, each partition counted on the left hand side of the equation is counted in exactly one of the terms of the sum on the right hand side, the one for which k is ...